Vyas, A. R. und Singh, S. V.: Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. The AAPS Journal, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24046237)

Khazal, K. F., Hill, D. L. und Grubbs, C. J.: Effect of Withania somnifera root extract on spontaneous estrogen receptor-negative mammary cancer in MMTV/Neu mice. Anticancer Research, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25368231)

Chang, E. et al: AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models. Journal of Neuro-Oncology, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26650066)

Kakar, S. S. et al: Withaferin a alone and in combination with cisplatin suppresses growth and metastasis of ovarian cancer by targeting putative cancer stem cells. PLOS ONE, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25264898)

Pingali, U., Pilli, R. und Fatima, N.: Effect of standardized aqueous extract of Withania somnifera on tests of cognitive and psychomotor performance in healthy human participants. Pharmacognosy Research, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24497737)

Mishra, L. C., Singh, B. B. und Dagenais, S.: Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Alternative Medicine Review, 2000. (https://www.ncbi.nlm.nih.gov/pubmed/10956379)

Anwer, T. et al: Protective effect of Withania somnifera against oxidative stress and pancreatic beta-cell damage in type 2 diabetic rats. Acta Poloniae Pharmaceutica, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23285670)

Raut, A. A. et al: Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers. Journal of Ayurveda and Integrative Medicine, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23125505)

Gannon, J. M., Forrest, P. E. und Roy Chengappa, K. N.: Subtle changes in thyroid indices during a placebo-controlled study of an extract of Withania somnifera in persons with bipolar disorder. Journal of Ayurveda and Integrative Medicine, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25624699)

Ambiye, V. R. et al: Clinical Evaluation of the Spermatogenic Activity of the Root Extract of Ashwagandha (Withania somnifera) in Oligospermic Males: A Pilot Study. Evidence-Based Complementary and Alternative Medicine, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/24371462)

Chandrasekhar, K., Kapoor, J. und Anishetty, S.: A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian Journal of Psychological Medicine, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23439798)

Singh, N. et al: An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. African Journal of Traditional, Complementary and Alternative Medicines, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/22754076)

Kuboyama, T., Tohda, C. und Komatsu, K.: Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biological and Pharmaceutical Bulletin, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24882401)

Dongre, S. et al: Efficacy and Safety of Ashwagandha (Withania somnifera) Root Extract in Improving Sexual Function in Women: A Pilot Study. BioMed Research International, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26504795)

Wankhede, S. et al: Examining the effect of Withania somnifera supplementation on muscle strength and recovery: a randomized controlled trial. Journal of the International Society of Sports Nutrition, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26609282)

Pratte, M. A. et al: An alternative treatment for anxiety: a systematic review of human trial results reported for the Ayurvedic herb ashwagandha (Withania somnifera). Journal of Alternative and Complementary Medicine, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25405876)

Lopresti, A. L. et al: An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study. Medicine (Baltimore) Journal, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31517876)

Kaushik, M. K. et al: Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction. PLOS ONE, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28207892)

Deshpande et al: Study protocol and rationale for a prospective, randomized, double-blind, placebo-controlled study to evaluate the effects of Ashwagandha (Withania somnifera) extract on nonrestorative sleep. Medicine (Baltimore) Journal, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29953014)

Palliyaguru, D. L., Singh, S. V. und Kensler, T. W.: Withania somnifera: From prevention to treatment of cancer. Molecular Nutrition and Food Research, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26718910)

Kaur, T. und Kaur, G.: Withania somnifera as a potential candidate to ameliorate high fat diet-induced anxiety and neuroinflammation. Journal of Neuroinflammation, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/29025435)


Bifari, F. und Nisoli, E.: Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. British Journal of Pharmacology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/27638647)

Bonvini, A. et al: Immunomodulatory role of branched-chain amino acids. Nutrition Reviews, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30124936)

Brosnan, J. T. und Brosnan, M. E.: Branched-chain amino acids: enzyme and substrate regulation. The Journal of Nutrition, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16365084)

Fernstrom, J. D.: Branched-chain amino acids and brain function. The Journal of Nutrition, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/15930466)

Fouré, A. und Bendahan, D.: Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28934166)

Gee, T. I. und Deniel, S.: Branched-chain aminoacid supplementation attenuates a decrease in power-producing ability following acute strength training. The Journal of Sports Medicine and Physical Fitness, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26853239)

Li, Y. C. et al: The Ratio of Dietary Branched-Chain Amino Acids is Associated with a Lower Prevalence of Obesity in Young Northern Chinese Adults: An Internet-Based Cross-Sectional Study. Nutrients, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26593945)

Nagata, C. et al: Branched-chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study. American Journal of Epidemiology, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/24008908)

Newgard, C. B.: Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22560213)

Qin, L. Q. et al: Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults. The Journal of Nutrition, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21169225)

Rowlands, D. S. et al: Protein-leucine fed dose effects on muscle protein synthesis after endurance exercise. Medicine & Science in Sports & Exercise, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/25026454)

Stoppani, J. et al: Consuming a supplement containing branched-chain amino acids during a resistance-training program increases lean mass, muscle strength and fat loss. Journal of the International Society of Sports Nutrition, 2009. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3313152/)

WHO: Protein and amino acid requirements in human nutrition. WHO Technical Report Series 935, 2007. (https://www.who.int/nutrition/publications/nutrientrequirements/WHO_TRS_935/en/)

Yoon, M. S.: The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Nutrients, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27376324)

Yudkoff, M.: Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochemical Research, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/27696119)


Brown, P. N. und Roman, M. C.: Determination of hydrastine and berberine in goldenseal raw materials, extracts, and dietary supplements by high-performance liquid chromatography with UV: collaborative study. Journal of AOAC International, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18727526)

Chen, W. et al: Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21637946)

Di Pierro, F. et al: Pilot study on the additive effects of berberine and oral type 2 diabetes agents for patients with suboptimal glycemic control. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22924000)

Dong, H. et al: Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evidence-based Complementary and Alternative Medicine, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23118793)

Fan, J. et al: Berberine produces antidepressant-like effects in ovariectomized mice. Scientific Reports, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28465511)

Fan, J. et al: Pharmacological effects of berberine on mood disorders. Journal of Cellular and Molecular Medicine, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30450823)

Funk, R. S. et al: Variability in Potency Among Commercial Preparations of Berberine. Journal of Dietary Supplements, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/28792254)

Li, M. F., Zhou, X. M. und Li, X. L.: The Effect of Berberine on Polycystic Ovary Syndrome Patients with Insulin Resistance (PCOS-IR): A Meta-Analysis and Systematic Review. Evidence-based Complementary and Alternative Medicine, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30538756)

Liao, Y. et al: Berberine inhibits cardiac remodeling of heart failure after myocardial infarction by reducing myocardial cell apoptosis in rats. Experimental and Therapeutic Medicine, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30186485)

Ortiz, L. M. et al: Berberine, an epiphany against cancer. Molecules, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25153862)

Ruan, H. et al: Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28846104)

Wang, Y. und Zidichouski, J. A.: Update on the Benefits and Mechanisms of Action of the Bioactive Vegetal Alkaloid Berberine on Lipid Metabolism and Homeostasis. Cholesterol, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30057809)

Xia, L. M. und Luo, M. H.: Study progress of berberine for treating cardiovascular disease. Chronic Diseases and Translational Medicine, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/29063012)

Yan, H. M. et al: Efficacy of Berberine in Patients with Non-Alcoholic Fatty Liver Disease. PLOS ONE, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26252777)

Zhang, H. et al: Trimetazidine combined with berberine on endothelial function of patients with coronary heart disease combined with primary hypertension. Experimental and Therapeutic Medicine, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30116381)

Zhang, X. et al: Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Scientific Reports, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26396057)

Zhang, Y. et al: Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. The Journal of Clinical Endocrinology & Metabolism, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18397984)

Zou, K. et al: Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacologica Sinica, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/27917872)


Aue, K.: Biotin – das Haut- und Haar-Vitamin. Deutsche Apotheker Zeitung, 2008. (https://www.deutsche-apotheker-zeitung.de/daz-az/2008/daz-23-2008/biotin-das-haut-und-haar-vitamin)

Cashman, M. W. und Sloan, S. B.: Nutrition and nail disease. Clinics in Dermatology, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20620759)

Colombo, V. E. et al: Treatment of brittle fingernails and onychoschizia with biotin: scanning electron microscopy. Journal of the American Academy of Dermatology, 1990. (https://www.ncbi.nlm.nih.gov/pubmed/2273113)

DiBaise, M. und Tarleton, S. M.: Hair, Nails, and Skin: Differentiating Cutaneous Manifestations of Micronutrient Deficiency. Nutrition in Clinical Practice, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31144371)

John, J. J. und Lipner, S. R.: Consumer Perception of Biotin Supplementation. Journal of Cutaneous Medicine and Surgery, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31409115)

Lipner, S. R. und Scher, R. K.: Biotin for the treatment of nail disease: what is the evidence? Journal of Dermatological Treatment, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29057689)

Lipner, S. R.: Rethinking biotin therapy for hair, nail, and skin disorders. Journal of the American Academy of Dermatology, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29438761)

Mock, D. M.: Skin manifestations of biotin deficiency. Seminars in dermatology, 1991. (https://www.ncbi.nlm.nih.gov/pubmed/1764357)

Neiva, R. F. et al: Effects of vitamin-B complex supplementation on periodontal wound healing. Journal of Periodontology, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/16018750)

Patel, D.P., Swink, S. M. und Castelo-Soccio, L.: A Review of the Use of Biotin for Hair Loss. Skin Appendage Disorders, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28879195)

Said, H. M.: Biotin: the forgotten vitamin. The American Journal of Clinical Nutrition, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/11815306)

Trüeb, R. M.: Serum Biotin Levels in Women Complaining of Hair Loss. International Journal of Trichology, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27601860)

Yang, Y. et al: Spinal cord demyelination associated with biotinidase deficiency in 3 Chinese patients. Journal of Child Neurology, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17621476)

Zempleni J., Wijeratne, S. S. und Hassan, Y.I.: Biotin. BioFactors, 2009. (https://www.ncbi.nlm.nih.gov/pubmed/19319844)


Bonovas, S. et al: Calcium supplementation for the prevention of colorectal adenomas: A systematic review and meta-analysis of randomized controlled trials. World Journal of Gastroenterology, 2016. (https://pubmed.ncbi.nlm.nih.gov/27182169/)

Bostik, R. M. et al: Calcium and colorectal epithelial cell proliferation: a preliminary randomized, double-blinded, placebo-controlled clinical trial. Journal of the National Cancer Institute, 1993. (https://pubmed.ncbi.nlm.nih.gov/8418302/)

Fang, A. et al: Habitual dietary calcium intakes and calcium metabolism in healthy adults Chinese: a systematic review and meta-analysis. Asia Pacific Journal of Clinical Nutrition, 2016. (https://pubmed.ncbi.nlm.nih.gov/27702721/)

Frazier, H. N. et al: Calcium's role as nuanced modulator of cellular physiology in the brain. Biochemical and Biophysical Research Communications, 2017. (https://pubmed.ncbi.nlm.nih.gov/27553276/)

Gennari, C.: Calcium and vitamin D nutrition and bone disease of the elderly. Public Health Nutrition, 2001. (https://pubmed.ncbi.nlm.nih.gov/11683549/)

Grossman, D. C. et al: Vitamin D, Calcium, or Combined Supplementation for the Primary Prevention of Fractures in Community-Dwelling Adults: US Preventive Services Task Force Recommendation Statement. Journal of the American Medical Association, 2018. (https://pubmed.ncbi.nlm.nih.gov/29677309/)

Honkanen, R., Kärkkäinen, M. und Kröger, H.: Calcium and vitamin D in promotion of postmenopausal bone health. Womens Health, 2010. (https://pubmed.ncbi.nlm.nih.gov/21118034/)

Lecerf, J. M. et al: Effects of two marine dietary supplements with high calcium content on calcium metabolism and biochemical marker of bone resorption. European Journal of Clinical Nutrition, 2008. (https://pubmed.ncbi.nlm.nih.gov/17522607/)

Lipkin, M. und Newmaek, H. et al: Calcium and the prevention of colon cancer. Journal of Cellular Biochemistry, 1995. (https://pubmed.ncbi.nlm.nih.gov/8538212/)

Newmark, H. L. und Lipkin, M.: Calcium, vitamin D, and colon cancer. Cancer Research, 1992. (https://pubmed.ncbi.nlm.nih.gov/1544142/)

Reid, I. R. und Bolland, M. J.: Calcium and/or Vitamin D Supplementation for the Prevention of Fragility Fractures: Who Needs It? Nutrients, 2020. (https://pubmed.ncbi.nlm.nih.gov/32272593/)

Xu, Y. et al: Research progress on applications of calcium derived from marine organisms. Scientific Reports, 2020. (https://pubmed.ncbi.nlm.nih.gov/33116162/)


Ewing, L. E. et al: Hepatotoxicity of a Cannabidiol-Rich Cannabis Extract in the Mouse Model. Molecules, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31052254)

Hammell, D. C. et al: Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis. European Journal of Pain, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26517407)

Iffland, K., F. Grotenhermen: An Update on Safety and Side Effects of Cannabidiol: A Review of Clinical Data and Relevant Animal Studies. Cannabis and Cannabinoid Research, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28861514)

Karler, R. et al: The anticonvulsant activity of cannabidiol and cannabinol. Life Sciences, 1973. (https://www.sciencedirect.com/science/article/abs/pii/0024320573901410)

Kim, J. L. et al: Cannabidiol Enhances the Therapeutic Effects of TRAIL by Upregulating DR5 in Colorectal Cancer. Cancers, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31075907)

Lee, J. L. C. et al: Cannabidiol regulation of emotion and emotional memory processing: relevance for treating anxiety-related and substance abuse disorders. British Journal of Pharmacology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28268256)

McGrath, S. et al: Randomized blinded controlled clinical trial to assess the effect of oral cannabidiol administration in addition to conventional antiepileptic treatment on seizure frequency in dogs with intractable idiopathic epilepsy. Journal of the American Veterinary Medical Association, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31067185)

Morgan, C. J. et al: Cannabidiol reduces cigarette consumption in tobacco smokers: preliminary findings. Addictive Behaviors, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23685330)

N/A: The health effects of cannabis and cannabinoids. The National Academies of Sciences, Engineering, Medicine, 2017. (https://www.nap.edu/resource/24625/Cannabis_committee_conclusions.pdf)

Oláh, A. et al: Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. The Journal of Clinical Investigation, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25061872)

Philpott, H. T. et al: Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28885454)

Rosenberg, E. C. et al: Cannabinoids and Epilepsy. Neurotherapeutics, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26282273)

Turcotte, C. et al: Impact of Cannabis, Cannabinoids, and Endocannabinoids in the Lungs. Frontiers in Pharmacology, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27695418)

Wheless, J. W. et al: Pharmacokinetics and Tolerability of Multiple Doses of Pharmaceutical‑Grade Synthetic Cannabidiol in Pediatric Patients with Treatment‑Resistant Epilepsy. CNS Drugs, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31049885)

World Health Organization: Cannabidiol (CBD) Critical Review Report, 2018. (https://www.who.int/medicines/access/controlled-substances/CannabidiolCriticalReview.pdf)

Xiong, W. et al: Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. Journal of Experimental Medicine, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22585736)

Zieba, J. et al: Cannabidiol (CBD) reduces anxiety-related behavior in mice via an FMRP1-independent mechanism. Pharmacology, Biochemistry and Behavior, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31063743)

CBD Öl – Studie Angststörungen:

Decker, J. et al: Lehrstuhl- & universitätsübergreifende Studie zur Wirkung von CBD bei Patienten mit Angststörung. Cannabidiol Studie, 2019. (https://www.cbd-anxiety-study.com/)


Ayati, Z. et al: Ethnobotany, Phytochemistry and Traditional Uses of Curcuma spp. and Pharmacological Profile of Two Important Species (C. longa and C. zedoaria): A Review. Current Pharmaceutical Design, 2019. (https://pubmed.ncbi.nlm.nih.gov/30947655/)

Deodhar, S. D., Sethi, R. und Srimal, R. C.: Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian Journal of Medical Research, 1980. (https://pubmed.ncbi.nlm.nih.gov/7390600/)

Dosoky, N. S. und Setzer, W. N.: Chemical Composition and Biological Activities of Essential Oils of Curcuma Species. Nutrients, 2018. (https://pubmed.ncbi.nlm.nih.gov/30200410/)

Jurenka, J. S.: Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Alternative Medicine Review, 2009. (https://pubmed.ncbi.nlm.nih.gov/19594223/)

Karlowicz-Bodalska, K. et al: Curcuma Longa As Medicinal Herb In The Treatment Of Diabet - Ic Complications. Acta Poloniae Pharmaceutica, 2017. (https://pubmed.ncbi.nlm.nih.gov/29624265/)

Kocaadam, B. und Şanlier, N.: Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 2017. (https://pubmed.ncbi.nlm.nih.gov/26528921/)

Kumar, A. et al: Essential oil from waste leaves of Curcuma longa L. alleviates skin inflammation. Inflammopharmacology, 2018. (https://pubmed.ncbi.nlm.nih.gov/29429001/)

Kuptniratsaikul, V. et al: Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. Clinical Interventions in Aging, 2014. (https://pubmed.ncbi.nlm.nih.gov/24672232/)

Perkins, K., Sahy, W. und Becket, R. D.: Efficacy of Curcuma for Treatment of Osteoarthritis. Evidence-based Complementary and Alternative Medicine, 2017. (https://pubmed.ncbi.nlm.nih.gov/26976085/)

Pulido-Moran, M. et al: Curcumin and Health. Molecules, 2016. (https://pubmed.ncbi.nlm.nih.gov/26927041/)

Soleimani, V., Sahebkar, A. und Hosseinzadeh, H.: Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytotherapy Research, 2018. (https://pubmed.ncbi.nlm.nih.gov/29480523/)

Srimal, R. C. und Dhawan, B. N.: Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. Journal of Pharmacy and Pharmacology, 1973. (https://pubmed.ncbi.nlm.nih.gov/4146582/)

Tejada, S. et al: Wound Healing Effects of Curcumin: A Short Review. Current Pharmaceutical Biotechnology, 2016. (https://pubmed.ncbi.nlm.nih.gov/27640646/)

Vaughn, A. R., Branum, A. und Sivamani, R. K.: Effects of Turmeric (Curcuma longa) on Skin Health: A Systematic Review of the Clinical Evidence. Phytotherapy Research, 2016. (https://pubmed.ncbi.nlm.nih.gov/27213821/)  erfolgen.


Cappello, A. R. et al: Bergamot (Citrus Bergamia Risso) Flavonoids and Their Potential Benefits in Human Hyperlipidemia and Atherosclerosis: An Overview. Mini-Reviews in Medicinal Chemistry, 2016. (https://pubmed.ncbi.nlm.nih.gov/26156545/)

Cassidy, A. und Minihane, A. M.: The Role of Metabolism (And the Microbiome) in Defining the Clinical Efficacy of Dietary Flavonoids. The American Journal of Clinical Nutrition, 2017. (https://pubmed.ncbi.nlm.nih.gov/27881391/)

Clere, N. et al: Anticancer Properties of Flavonoids: Roles in Various Stages of Carcinogenesis. Cardiovascular & Hematological Agents in Medicinal Chemistry, 2011. (https://pubmed.ncbi.nlm.nih.gov/21644918/)

Edwards-Jones, V. et al: The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns, 2004. (https://www.ncbi.nlm.nih.gov/pubmed/15555788)

Kandaswami, C. et al: The Antitumor Activities of Flavonoids. In Vivo, 2005. (https://pubmed.ncbi.nlm.nih.gov/16097445/)

López-Lázaro, M.: Flavonoids as Anticancer Agents: Structure-Activity Relationship Study. Current Medicinal Chemistry - Anti-Cancer Agents, 2002. (https://pubmed.ncbi.nlm.nih.gov/12678721/)

Mukai, R.: Prenylation Enhances the Biological Activity of Dietary Flavonoids by Altering Their Bioavailability. Bioscience, Biotechnology, and Biochemistry, 2018. (https://pubmed.ncbi.nlm.nih.gov/29307271/)

Napavichayanun, S. et al: Identification and Quantification and Antioxidant Activity of Flavonoids in Different Strains of Silk Cocoon, Bombyx Mori. Archives of Biochemistry and Biophysics, 2017. (https://pubmed.ncbi.nlm.nih.gov/28807613/)

Nishiumi, S. et al: Dietary Flavonoids as Cancer-Preventive and Therapeutic Biofactors. Frontiers in Bioscience, 2011. (https://pubmed.ncbi.nlm.nih.gov/21622274/)

Reagor, L. et al: The effectiveness of processed grapefruit-seed extract as an antibacterial agent: I. An in vitro agar assay. Journal of Alternative and Complementary Medicine, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12165190)

Serafini, M., Peluso, I. und Raguzzini, A.: Flavonoids as Anti-Inflammatory Agents. Proceedings of the Nutrition Society, 2010. (https://pubmed.ncbi.nlm.nih.gov/20569521/)

Wang, H. K.: The Therapeutic Potential of Flavonoids. Expert Opinion on Investigational Drugs, 2000. (https://pubmed.ncbi.nlm.nih.gov/11060796/)

Wen, L. et al: Structure, Bioactivity, and Synthesis of Methylated Flavonoids. Annals of the New York Academy of Sciences, 2017. (https://pubmed.ncbi.nlm.nih.gov/28436044/)

Yi, Y. S.: Regulatory Roles of Flavonoids on Inflammasome Activation During Inflammatory Responses. Molecular Nutrition and Food Research, 2018. (https://pubmed.ncbi.nlm.nih.gov/29774640/)


Abutair, A. S., Naser, I. A. und Hamed, A. T.: Soluble fibers from psyllium improve glycemic response and body weight among diabetes type 2 patients (randomized control trial). Journal of Nutrition, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27733151)

Brum, J. M. et al: Satiety effects of psyllium in healthy volunteers. Appetite Journal, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27166077)

Cheng, J. et al: Influence of Lactitol and Psyllium on Bowel Function in Constipated Indian Volunteers: A Randomized, Controlled Trial. Nutrients, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31117218)

Currò, D. et al: Probiotics, fibre and herbal medicinal products for functional and inflammatory bowel disorders. British Journal of Pharmacology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/27696378)

Draksiene, G. et al: Psyllium (Plantago Ovata Forsk) Husk Powder as a Natural Superdisintegrant for Orodispersible Formulations: A Study on Meloxicam Tablets. Molecules, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31500129)

Erdogan, A. et al: Randomised clinical trial: mixed soluble/insoluble fibre vs. psyllium for chronic constipation. Alimentary Pharmacology and Therapeutics, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27125883)

Gibb, R. D. et al: Psyllium fiber improves glycemic control proportional to loss of glycemic control: a meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus. The American Journal of Clinical Nutrition, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26561625)

Jalanka, J. et al: The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls. International Journal of Molecular Sciences, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30669509)

Jovanovski, E. et al: Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative lipid targets, non-HDL cholesterol and apolipoprotein B: a systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30239559)

Niinistö, K. E. et al: Investigation of the treatment of sand accumulations in the equine large colon with psyllium and magnesium sulphate. Journal of Veterinary Science, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30103912)

Orel, R. und Kamhi Trop, T.: Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World Journal of Gastroenterology, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25206258)

Paré, P. und Fedorak, R. N.: Systematic review of stimulant and nonstimulant laxatives for the treatment of functional constipation. Canadian Journal of Gastroenterology & Hepatology, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25390617)

Shulman, R. J. et al: Psyllium Fiber Reduces Abdominal Pain in Children With Irritable Bowel Syndrome in a Randomized, Double-Blind Trial. Clinical Gastroenterology and Hepatology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/27080737)

Slavin, J.: Fiber and prebiotics: mechanisms and health benefits. Nutrients, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23609775)

Wong, C., Harris, P. J. und Ferguson, L. R.: Potential Benefits of Dietary Fibre Intervention in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27314323)

Garcinia Cambogia:

Choppa, T., Selvaraj, C. I. und Zachariah, A.: Evaluation and Characterization of Malabar Tamarind [Garcinia cambogia (Gaertn.) Desr.] Seed Oil. Journal of Food Science and Technology, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26345007)

Chung, J. et al: Molecular modifiers reveal a mechanism of pathological crystal growth inhibition. Nature, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/27501150)

Fassina, P. et al: The effect of Garcinia Cambogia as coadjuvant in the weight loss process. Nutrición Hospitalaria, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26667686)

Goudarzvand, M. et al: Hydroxycitric acid ameliorates inflammation and oxidative stress in mouse models of multiple sclerosis. Neural Regeneration Research, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27904492)

Haber, S. L. et al: Garcinia cambogia for weight loss. American Journal of Health-System Pharmacy, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29317394)

Heymsfield, S. Bb et al: Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. Journal of the American Medical Association, 1998. (https://www.ncbi.nlm.nih.gov/pubmed/9820262)

Maia-Landim, A. et al: Long-term effects of Garcinia cambogia/Glucomannan on weight loss in people with obesity, PLIN4, FTO and Trp64Arg polymorphisms. BMC Complementary and Alternative Medicine, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29361938)

Sharma, A. et al: Acute Hepatitis due to Garcinia Cambogia Extract, an Herbal Weight Loss Supplement. Case Reports in Gastrointestinal Medicine, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30147968)

Sripradha, R. und Magadi, S. G.: Efficacy of garcinia cambogia on body weight, inflammation and glucose tolerance in high fat fed male wistar rats. Journal of Clinical and Diagnostic Research for doctors, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/25859449)

Vasques, C. A. et al: Hypolipemic effect of Garcinia cambogia in obese women. Phytotherapy Research, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24133059)


Adeneye, A. A.: Methanol seed extract of Citrus paradisi Macfad lowers blood glucose, lipids and cardiovascular disease risk indices in normal Wistar rats. Nigerian Quarterly Journal of Hospital Medicine, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12165190)

Bernatoniene, J. et al: A combination of grapefruit seed extract and concentrated cranberry juice as a potential antimicrobial preservative for the improvement of microbiological stability of hypromellose gel. Česká a slovenská farmacie, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/24237471)

Cvetnić, Z. und Vladimir-Knezević, S.: Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharmaceutica, 2004. (https://www.ncbi.nlm.nih.gov/pubmed/15610620)

Dembinski, A. et al: Extract of grapefruit-seed reduces acute pancreatitis induced by ischemia/reperfusion in rats: possible implication of tissue antioxidants. Journal of Physiology and Pharmacology, 2004. (https://www.ncbi.nlm.nih.gov/pubmed/15613745)

Edwards-Jones, V. et al: The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns, 2004. (https://www.ncbi.nlm.nih.gov/pubmed/15555788)

Hung, W. L. et al: Chemistry and health effects of furanocoumarins in grapefruit. Journal of Food and Drug Analysis, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28911545)

Kang, S. T. et al: Effects of Grapefruit Seed Extract on Oxidative Stability and Quality Properties of Cured Chicken Breast. Korean Journal for Food Science of Animal Resources, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28747829)

Komura, M. et al: Inhibitory effect of grapefruit seed extract (GSE) on avian pathogens. The Journal of Veterinary Medical Science, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30713281)

Mandadi, K. K. et al: Red Mexican grapefruit: a novel source for bioactive limonoids and their antioxidant activity. Zeitschrift für Naturforschung, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17542482)

Ou, M. C. et al: The Composition, Antioxidant and Antibacterial Activities of Cold-Pressed and Distilled Essential Oils of Citrus paradisi and Citrus grandis (L.) Osbeck. Evidence-Based Complementary and Alternative Medicine, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26681970)

Oyelami, O. A. et al: The effectiveness of grapefruit (Citrus paradisi) seeds in treating urinary tract infections. Journal of Alternative and Complementary Medicine, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/15865506)

Reagor, L. et al: The effectiveness of processed grapefruit-seed extract as an antibacterial agent: I. An in vitro agar assay. Journal of Alternative and Complementary Medicine, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12165190)

Semprini, P. et al: Antibacterial properties of grapefruit seed extract against Paenibacillus larvae subsp. larvae. Veterinaria Italiana, 2004. (https://www.ncbi.nlm.nih.gov/pubmed/20437392)

Zayachkivska, O. S. et al: Gastroprotective effects of flavonoids in plant extracts. Journal of Physiology and Pharmacology, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/15800396)


Brien, S. et al: Systematic review of the nutritional supplement Perna Canaliculus (green-lipped mussel) in the treatment of osteoarthritis. QJM, 2008, S. 167-79. (https://www.ncbi.nlm.nih.gov/pubmed/18222988)

Bui, Linh M., Bierer, Tiffany L.: Influence of Green Lipped Mussels (Perna canaliculus) in Alleviating Signs of Arthritis in Dogs. Veterinary Therapeutics, Vol. 2, No. 2, 2001. Vernon, USA. (https://www.ncbi.nlm.nih.gov/pubmed/19753702)

Cayzer, J. et al: A randomised, double‐blinded, placebo‐controlled study on the efficacy of a unique extract of green‐lipped mussel (Perna canaliculus) in horses with chronic fetlock lameness attributed to osteoarthritis. Equine Veterinary Journal, Vol. 44, Issue 4 2011. (https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2042-3306.2011.00455.x)

Coulson, S. et al: Green-lipped mussel extract (Perna canaliculus) and glucosaminesulphate in patients with knee osteoarthritis: therapeutic efficacyand effects on gastrointestinal microbiota profiles. Inflammopharmacology, July 2012. Australia. (https://www.researchgate.net/publication/229437402)

Emelyanov, A. et al: Treatment of asthma with lipid extract of New Zealand green-lipped mussel: a randomised clinical trial. European Respiratory Journal 2002. Therapeutic Clinic, Pavlov Medical University Hospital, St. Petersburg, Russland. (https://www.ncbi.nlm.nih.gov/pubmed/12358334)

Gibson et al: Perna canaliculus in the treatment of arthritis. Hong Kong, 2000. Appendix B, S. 7-11. (https://www.ncbi.nlm.nih.gov/pubmed/7003577)

Gibson, SLM et al: The treatment of arthritis with a lipid extract of Perna canaliculus: a randomized trial. Complementary Therapies in Medicine 1998, Vol. 6 Issue 3. S. 122-126. (https://www.sciencedirect.com/science/article/pii/S0965229998800034)

Halpern, Georges M.: Anti-inflammatory effects of a stabilized lipid extrac of Perna canaliculus. 2000. (https://www.ncbi.nlm.nih.gov/pubmed/11094640)

Rainsford, KD, Whitehouse MW: Gastroprotective and anti-inflammatory properties of greenlipped mussel (Perna canaliculus) preparation. Arzneimittelforschung 1980. (https://www.ncbi.nlm.nih.gov/pubmed/7194074)

Rusk, Adam B.: Larval development of the New Zealand mussel Perna canaliculus and effects of cryopreservation. Thesis. Auckland University of Technology, Auckland 2012. (https://openrepository.aut.ac.nz/handle/10292/5262)


Al-Khalifa, A. et al: Effect of dietary hempseed intake on cardiac ischemia-reperfusion injury. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17122327)

Callaway, J. et al: Efficacy of dietary hempseed oil in patients with atopic dermatitis. Journal of Dermatological Treatment, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/16019622)

Girgih, A. T. et al: A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats. Nutrients, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25493943)

Lucas, C. J., Galettis, P. und Schneider, J.: The pharmacokinetics and the pharmacodynamics of cannabinoids. British Journal of Clinical Pharmacology, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30001569)

Marks, D. H. und Friedman, A.: The Therapeutic Potential of Cannabinoids in Dermatology. Skin Therapy Letter, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30517778)

Mikulcová, V. et al: Formulation, Characterization and Properties of Hemp Seed Oil and Its Emulsions. Molecules, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28448475)

Oláh, A. et al: Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. Journal of Clinical Investigation, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25061872)

Prociuk, M. et al: The effects of dietary hempseed on cardiac ischemia/reperfusion injury in hypercholesterolemic rabbits. Experimental & Clinical Cardiology, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/18651032)

Rezapour-Firouzi, S. et al: Hemp seed/evening primrose oil affects expression of STAT3, IL-17, and FOXP3+ in experimental autoimmune encephalomyelitis. Research in Pharmaceutical Sciences, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31620191)

Uluata, S. und Ozdemir, N.: Antioxidant Activities and Oxidative Stabilities of Some Unconventional Oilseeds. Journal of the American Oil Chemists' Society, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22467958)

VanDolah, H. J., Bauer, B. A. und Mauck, K.F.: Clinicians' Guide to Cannabidiol and Hemp Oils. Mayo Clinic Proceedings, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31447137)

Zimniewska, M. et al: Antioxidant Potential of Hemp and Flax Fibers Depending on Their Chemical Composition. Molecules, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30103406)


Arent, S. M. et al: The Combined Effects of Exercise, Diet, and a Multi-Ingredient Dietary Supplement on Body Composition and Adipokine Changes in Overweight Adults. Journal of the American College of Nutrition, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29111889)

Attia, R. T. et al: Raspberry ketone and Garcinia Cambogia rebalanced disrupted insulin resistance and leptin signaling in rats fed high fat fructose diet. Biomedicine & Pharmacotherapy, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30530230)

Bredsdorff, L. et al.: Raspberry ketone in food supplements--High intake, few toxicity data--A cause for safety concern? Regulatory Toxicology and Pharmacology, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26160596)

Kshatriya, D. et al: Phenolic-enriched raspberry fruit extract (Rubus idaeus) resulted in lower weight gain, increased ambulatory activity, and elevated hepatic lipoprotein lipase and heme oxygenase-1 expression in male mice fed a high-fat diet. Nutrition Research, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31252376)

Lee, D. et al: Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microbial Cell Factories, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26944880)

Lehman, K. A. et al: Raspberry Ketone Trifluoroacetate Trapping of Zeugodacus cucurbitae (Diptera: Tephritidae) in Hawaii. Journal of Economic Entomology, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30715399)

Leu, S. Y. et al: Raspberry Ketone Reduced Lipid Accumulation in 3T3-L1 Cells and Ovariectomy-Induced Obesity in Wistar Rats by Regulating Autophagy Mechanisms. Journal of Agricultural and Food Chemistry, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/29164883)

Morimoto, C. et al: Anti-obese action of raspberry ketone. Life Sciences, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/15862604)

Wang, L., Meng, X. und Zhang, F.: Raspberry ketone protects rats fed high-fat diets against nonalcoholic steatohepatitis. Journal of Medicinal Food, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22551412)


Au-Yeung, F. et al: The effects of gelled konjac glucomannan fibre on appetite and energy intake in healthy individuals: a randomised cross-over trial. British Journal of Nutrition, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29202887)

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA): Scientific Opinion on the substantiation of health claims related to konjac mannan (glucomannan) and reduction of body weight. European Food Safety Authority (EFSA), 2010. (https://www.efsa.europa.eu/de/efsajournal/pub/1798)

Gallaher, C. M. et al: Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. Journal of Nutrition, 2000. (https://www.ncbi.nlm.nih.gov/pubmed/11053517)

Han, Y. et al: Effect of glucomannan on functional constipation in children: a systematic review and meta-analysis of randomised controlled trials. Asia Pacific Journal of Clinical Nutrition, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28429913)

Henry, D. A. et al: Glucomannan and risk of oesophageal obstruction. British Medical Journal (Clinical Research Ed.), 1986. (https://www.ncbi.nlm.nih.gov/pubmed/3004635)

Ho, H. V. T. et al: A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. The American Journal of Clinical Nutrition, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28356275)

Jiang, M. et al: Depolymerized konjac glucomannan: preparation and application in health care. Journal of Zhejiang University Science, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29971989)

Keithley, J. K. et al: Safety and efficacy of glucomannan for weight loss in overweight and moderately obese adults. Journal of Obesity, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/24490058)

Maia-Landim, A. et al: Long-term effects of Garcinia cambogia/Glucomannan on weight loss in people with obesity, PLIN4, FTO and Trp64Arg polymorphisms. BMC Complementary and Alternative Medicine, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29361938)

Shimizu, H. et al: Effects of dietary konjac mannan on serum and liver cholesterol levels and biliary bile acid composition in hamsters. Journal of pharmacobiodynamics, 1991. (https://www.ncbi.nlm.nih.gov/pubmed/1666411)

Tester, R. F. und Al-Ghazzewi, F. H.: Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan. Journal of the Science of Food and Agriculture, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26676961)

Zalewski, B. M. und Szajewska, H.: Effect of glucomannan supplementation on body weight in overweight and obese children: protocol of a randomised controlled trial. British Medical Journal Open, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/25869689)


Bahadoran, Z. et al: Dietary L-arginine intake and the incidence of coronary heart disease: Tehran lipid and glucose study. Nutrition & Metabolism, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26985233)

Bailey, S. J. et al: Acute L-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. Journal of Applied Physiology, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20724562)

Barassi, A. et al: Levels of l-arginine and l-citrulline in patients with erectile dysfunction of different etiology. Andrology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28178400)

Blanc, R. S. und Richard, S.: Regenerating muscle with arginine methylation. Transcription, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28301308)

Chen, J. et al: Effect of oral administration of high-dose nitric oxide donor L-arginine in men with organic erectile dysfunction: results of a double-blind, randomized, placebo-controlled study. BJU International, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10233492)

Kattenstroth, J. C.: Einfluss von L-Arginin auf die Gefäßgesundheit. Pharmazeutische Zeitung, Ausgabe 37/2017. (https://www.pharmazeutische-zeitung.de/ausgabe-372017/einfluss-von-l-arginin-auf-die-gefaessgesundheit/)

McNeal, C. J. et al: Safety and Effectiveness of Arginine in Adults. Journal of Nutrition, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27934649)

Morris, S. M.: Arginine Metabolism Revisited. Journal of Nutrition, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27934648)

Piatti, P. M. et al: Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care, 2001. (https://www.ncbi.nlm.nih.gov/pubmed/11347747)

Rosenthal, M. D. et al: Parenteral or Enteral Arginine Supplementation Safety and Efficacy. Journal of Nutrition, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27934650)

Ströhle, A. und Hahn, A.: Arginin bei Atherosklerose. Deutsche Apotheker Zeitung, Ausgabe 20/2012. (https://www.deutsche-apotheker-zeitung.de/daz-az/2012/daz-20-2012/arginin-bei-atherosklerose)

Suzuki, T. et al: The effects on plasma L-arginine levels of combined oral L-citrulline and L-arginine supplementation in healthy males. Bioscience, Biotechnology, and Biochemistry, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/27667025)

Venho, B. et al: Arginine intake, blood pressure, and the incidence of acute coronary events in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. The American Journal of Clinical Nutrition, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12145007)


Didari, T. et al: Effectiveness of probiotics in irritable bowel syndrome: Updated systematic review with meta-analysis. World Journal of Gastroenterology, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/25780308)

Duar, R. M. et al: Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiology Reviews, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28673043)

Ganesh, B. P. et al: Prebiotics, Probiotics, and Acetate Supplementation Prevent Hypertension in a Model of Obstructive Sleep Apnea. Hypertension, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30354816)

Goldstein, E. J., Tyrrell, K. L. und Citron, D. M.: Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clinical Infectious Diseases, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/25922408)

Heeney, D. D., Gareau, M. G. und Marco, M. L.: Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Current Opinion in Biotechnology, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/28866243)

Khalesi, S. et al: Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25047574)

Martínez-Martínez, M. I., Calabuig-Tolsá, R. und Cauli, O.: The effect of probiotics as a treatment for constipation in elderly people: A systematic review. Archives of Gerontology and Geriatrics, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28467916)

Redman, M. G., Ward, E.J. und Phillips, R. S.: The efficacy and safety of probiotics in people with cancer: a systematic review. Annals of Oncology, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24618152)

Slattery, C., Cotter, P. D. und O'Toole, P. W. et al: Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31159409)

Talib, N. et al: Isolation and Characterization of Lactobacillus spp. from Kefir Samples in Malaysia. Molecules, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31319614)

Wilkins, T. und Sequoia, J.: Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. American Family Physician, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28762696)

Yoshifuji, A. et al: Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrology Dialysis Transplantation, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26487672)


Brooks, N. A. et al: Beneficial effects of Lepidium meyenii (Maca) on psychological symptoms and measures of sexual dysfunction in postmenopausal women are not related to estrogen or androgen content. Menopause Journal, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18784609)

Dording, C. M. et al: A double-blind, randomized, pilot dose-finding study of maca root (L. meyenii) for the management of SSRI-induced sexual dysfunction. CNS Neuroscience & Therapeutics, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18801111)

Dostert, N. et al: Factsheet: datos botánicos de Maca. Lepidium meyenii Walp. San Marcos National University - Museum of Natural History, 2009. (https://www.researchgate.net/publication/43178820_Factsheet_datos_botanicos_de_Maca_Lepidium_meyenii_Walp)

Gao, X. C. et al: Screening of the Active Component Promoting Leydig Cell Proliferation from Lepidium meyenii Using HPLC-ESI-MS/MS Coupled with Multivariate Statistical Analysis. Molecules, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31163647)

Gonzales, G. F. et al: Maca (Lepidium meyenii Walp), Una Revisión Sobre Sus Propiedades Biológicas. Revista Peruana de Medicina Experimental y Salud Pública, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24718534)

Gonzales, G. F.: Ethnobiology and Ethnopharmacology of Lepidium meyenii (Maca), a Plant from the Peruvian Highlands. Evidence-Based Complementary and Alternative Medicine, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/21977053)

Li, J. et al: Anti-fatigue activity of polysaccharide fractions from Lepidium meyenii Walp. (maca). International Journal of Biological Macromolecules, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/27840217)

Melnikovova, I. et al: Effect of Lepidium meyenii Walp. on Semen Parameters and Serum Hormone Levels in Healthy Adult Men: A Double-Blind, Randomized, Placebo-Controlled Pilot Study. Evidence-Based Complementary and Alternative Medicine, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26421049/)

Nuñez, D. et al: Red Maca (Lepidium meyenii), a Plant from the Peruvian Highlands, Promotes Skin Wound Healing at Sea Level and at High Altitude in Adult Male Mice. High Altitude Medicine & Biology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28846044)

Rodríguez-Huamán, Á. et al: Antioxidant and neuroprotector effect of Lepidium meyenii (maca) methanol leaf extract against 6-hydroxy dopamine (6-OHDA)-induced toxicity in PC12 cells. Toxicology Mechanisms and Methods, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28007001)

Shin, B. C. et al: Maca (L. meyenii) for improving sexual function: a systematic review. BMC Complementary and Alternative Medicine, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20691074)

Stojanovska, L. et al: Maca reduces blood pressure and depression, in a pilot study in postmenopausal women. Climacteric, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/24931003)

Sun, Y. et al: Composition analysis and antioxidant activity of essential oils, lipids and polysaccharides in different phenotypes of Lepidium meyenii. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30241071)

Tafuri, S. et al: Chemical Analysis of Lepidium meyenii (Maca) and Its Effects on Redox Status and on Reproductive Biology in Stallions. Molecules, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31126050)

Yang, Q. et al: Effects of macamides on endurance capacity and anti-fatigue property in prolonged swimming mice. Pharmaceutical Biology, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26453017)

Zhang, L. et al: Protective effect of polysaccharide from maca (Lepidium meyenii) on Hep-G2 cells and alcoholic liver oxidative injury in mice. International Journal of Biological Macromolecules, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28174084)

Zhang, Y., Zhou, F. und Ge, F.: Effects of combined extracts of Lepidium meyenii and Allium tuberosum Rottl. on erectile dysfunction. BMC Complementary and Alternative Medicine, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31215433)

Zheng, W. et al: Lepidium meyenii Walp Exhibits Anti-Inflammatory Activity against ConA-Induced Acute Hepatitis. Mediators of Inflammation, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30647537)

Zheng, Y. et al: Two macamide extracts relieve physical fatigue by attenuating muscle damage in mice. Journal of the Science of Food and Agriculture, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30120787)


Castiglioni, S. et al: Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/23912329)

Chen, H. Y. et al: Magnesium enhances exercise performance via increasing glucose availability in the blood, muscle, and brain during exercise. PLOS ONE, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24465574)

Dibaba, D. et al: Magnesium intake and incidence of pancreatic cancer: the VITamins and Lifestyle study. British Journal of Cancer, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26554653)

Galli, S. et al: The effect of magnesium on early osseointegration in osteoporotic bone: a histological and gene expression investigation. Osteoporosis International, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28349251)

Golf, S.: Pharmakokinetik und Bioverfügbarkeit von Magnesium-Verbindungen. Pharmazeutische Zeitung, 2006. (https://www.pharmazeutische-zeitung.de/ausgabe-112006/pharmakokinetik-und-bioverfuegbarkeit-von-magnesium-verbindungen/)

Gröber, U., Schmidt, J. und Kisters, K.: Magnesium in Prevention and Therapy. Nutrients, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26404370)

Guerrera, M. P., Volpe, S. L. und Mao, J. J.: Therapeutic uses of magnesium. American Family Physician, 2009. (https://www.ncbi.nlm.nih.gov/pubmed/19621856)

Houston, M.: The role of magnesium in hypertension and cardiovascular disease. The Journal of Clinical Hypertension, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/22051430)

Kumar, G. et al: Magnesium improves cisplatin-mediated tumor killing while protecting against cisplatin-induced nephrotoxicity. American Journal of Physiology-Renal Physiology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28424213)

Volpe, S. L.: Magnesium and the Athlete. Current Sports Medicine Reports, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26166051)

Volpe, S. L.: Magnesium in disease prevention and overall health. Advances in Nutrition, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23674807)

Welch, A.A., Skinner, J. und Hickson, M.: Dietary Magnesium May Be Protective for Aging of Bone and Skeletal Muscle in Middle and Younger Older Age Men and Women: Cross-Sectional Findings from the UK Biobank Cohort. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/29084183)


Abenavoli, L. et al: Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytotherapy Research, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30080294)

Abenavoli, L. et al: Milk Thistle in Liver Diseases: Past, Present, Future. Phytotherapy Research, 2010. (https://www.researchgate.net/publication/44689105_Milk_Thistle_in_Liver_Diseases_Past_Present_Future)

Albrecht, M. et al: Die Therapie toxischer Leberschäden mit Legalon. Zeitschrift für Klinische Medizin, 1992. Ausgabe 47, S. 87–92. (Google Scholar)

Comelli, MC et al: Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy. Integrative Cancer Therapies, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17548791)

Federico, A. et al: Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28125040)

Ferenci, P.: Silymarin in the treatment of liver diseases: What is the clinical evidence?. Clinical Liver Disease Journal, 2016. (https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/cld.522)

Karimi, G. et al: “Silymarin”, a Promising Pharmacological Agent for Treatment of Diseases. Iranian Journal of Basic Medical Sciences, 2011. S. 308–317. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586829/)

Ladas, EJ et al: A randomized, controlled, double-blind, pilot study of milk thistle for the treatment of hepatotoxicity in childhood acute lymphoblastic leukemia (ALL). Cancer, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20014183)

Ladas, EJ et al: Milk Thistle Is Associated with Reductions in Liver Function Tests (LFTs) in Children Undergoing Therapy for Acute Lymphoblastic Leukemia (ALL). Society of Integrative Oncology, 2006. (http://www.bloodjournal.org/content/108/11/1882)

Li Volti, G. et al: Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovascular Diabetology, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21756303)

Mulrow, C., V. Lawrence: Milk Thistle: Effects on Liver Disease and Cirrhosis and Clinical Adverse Effects. Evidence Report. Agency for Healthcare Research and Quality, 2000. (https://www.ncbi.nlm.nih.gov/books/NBK11896/)

Post-White, J. et al: Advances in the Use of Milk Thistle (Silybum marianum). Integrative Cancer Therapies, 2007. S. 104–110. (https://www.ncbi.nlm.nih.gov/pubmed/17548789)

Reisinger, N. et al: Milk thistle extract and silymarin inhibit lipopolysaccharide induced lamellar separation of hoof explants in vitro. Toxins (Basel), 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25290524)

Šuk, J. et al: Isolated Silymarin Flavonoids Increase Systemic and Hepatic Bilirubin Concentrations and Lower Lipoperoxidation in Mice. Oxidative Medicine and Cellular Longevity, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30891115)

Surai, P.: Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel), 2015. S. 204–247. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665566/)

Tamayo, C, S. Diamond: Review of clinical trials evaluating safety and efficacy of milk thistle (Silybum marianum [L.] Gaertn.). Integrative Cancer Therapies, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17548793)

Varzi, HN et. al: Effect of silymarin and vitamin E on gentamicin-induced nephrotoxicity in dogs. Journal of Veterinary Pharmacology and Therapeutics, 2007. Volume 30, Issue 5, S. 477-481. (https://www.ncbi.nlm.nih.gov/pubmed/17803742)


Brien, S. et al: Systematic review of the nutritional supplements dimethyl sulfoxide (DMSO) and methylsulfonylmethane (MSM) in the treatment of osteoarthritis. Osteoarthritis and Cartilage, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18417375)

Butawan, M., Benjamin, R.L. und Bloomer, R. J.: Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28300758)

Chrubasik-Hausmann, S.: MSM (Methylsulfonylmethan). Bereich Phytotherapie, Institut für Rechtsmedizin der Universität Freiburg im Breisgau, 2017. (https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/rechtsmedizin/pdf/Addenda/Methylsulfonylmethan.pdf)

Debbi, E. M. et al: Efficacy of methylsulfonylmethane supplementation on osteoarthritis of the knee: a randomized controlled study. BMC Complementary and Alternative Medicine, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21708034)

Hewlings, S. und Kalman, D. S.: Evaluating the Impacts of Methylsulfonylmethane on Allergic Rhinitis After a Standard Allergen Challenge: Randomized Double-Blind Exploratory Study. JMIR Research Protocols, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30497995)

Kalman, D. S. et al: Influence of methylsulfonylmethane on markers of exercise recovery and performance in healthy men: a pilot study. Journal of the International Society of Sports Nutrition, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23013531)

Karabay, A. Z. et al: Methylsulfonylmethane Induces p53 Independent Apoptosis in HCT-116 Colon Cancer Cells. International Journal of Molecular Sciences, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27428957)

Kim, L. S. et al: Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: a pilot clinical trial. Osteoarthritis and Cartilage, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16309928)

Kim, Y. H. et al: The anti-inflammatory effects of methylsulfonylmethane on lipopolysaccharide-induced inflammatory responses in murine macrophages. Biological and Pharmaceutical Bulletin, 2009. (https://www.ncbi.nlm.nih.gov/pubmed/19336900)

Lim, E. J. et al: Methylsulfonylmethane suppresses breast cancer growth by down-regulating STAT3 and STAT5b pathways. PLOS ONE, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22485142)

Lubis, A. M. T. et al: Comparison of Glucosamine-Chondroitin Sulfate with and without Methylsulfonylmethane in Grade I-II Knee Osteoarthritis: A Double Blind Randomized Controlled Trial. Acta Medica Indonesiana, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28790224)

Mohammadi, S. et al: Protective effects of methylsulfonylmethane on hemodynamics and oxidative stress in monocrotaline-induced pulmonary hypertensive rats. Advances in Pharmacological and Pharmaceutical Sciences, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23118745)

Nakhostin-Roohi, B. et al: Effect of single dose administration of methylsulfonylmethane on oxidative stress following acute exhaustive exercise. Iranian Journal of Pharmaceutical Research, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/24523764)

Notarnicola, A. et al: Methylsulfonylmethane and boswellic acids versus glucosamine sulfate in the treatment of knee arthritis: Randomized trial. International Journal of Immunopathology and Pharmacology, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26684635)

van der Merwe, M. und Bloomer, R. J.: The Influence of Methylsulfonylmethane on Inflammation-Associated Cytokine Release before and following Strenuous Exercise. Journal of Sports Medicine, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27844051)

Withee, E. D. et al: Effects of Methylsulfonylmethane (MSM) on exercise-induced oxidative stress, muscle damage, and pain following a half-marathon: a double-blind, randomized, placebo-controlled trial. Journal of the International Society of Sports Nutrition, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28736511)

Wong, T. et al: Small Intestinal Absorption of Methylsulfonylmethane (MSM) and Accumulation of the Sulfur Moiety in Selected Tissues of Mice. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/29295596)

Omega-3 Fischöl:

Albert, C. M. et al: Dietary alpha-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation Journal, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/16301356)

Bang, H. O., Dyerberg, J. und Hjøorne N.: The composition of food consumed by Greenland Eskimos. Acta Medica Scandinavica, 1976. (https://www.ncbi.nlm.nih.gov/pubmed/961471)

Brinton, E. A. und Mason, R. P.: Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA). Lipids in Health and Disease, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28137294)

Costantini, L. et al: Impact of Omega-3 Fatty Acids on the Gut Microbiota. International Journal of Molecular Sciences, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/29215589)

Ferucci, L. et al: Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. The Journal of Clinical Endocrinology and Metabolism, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16234304)

Hu, F. B. et al: Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. The American Journal of Clinical Nutrition, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10584044)

Joshi, K. et al: Supplementation with flax oil and vitamin C improves the outcome of Attention Deficit Hyperactivity Disorder (ADHD). Prostaglandins, Leukotrienes & Essential Fatty Acids, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16314082)

Lemaitre, R. N. et al: n-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. The American Journal of Clinical Nutrition, 2003. (https://www.ncbi.nlm.nih.gov/pubmed/12540389)

Mori, T. A. et al: Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10454450)

Mori, T. A.: Omega-3 fatty acids and hypertension in humans. Clinical and Experimental Pharmacology and Physiology, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16922818)

Mozaffarian, D. et al: Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation Journal, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/15630029)

Rajaei, E. et al: The Effect of Omega-3 Fatty Acids in Patients With Active Rheumatoid Arthritis Receiving DMARDs Therapy: Double-Blind Randomized Controlled Trial. Global Journal of Health Science, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26925896)

Rallidis, L. S. et al: Dietary alpha-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients. Atherosclerosis Journal, 2003. (https://www.ncbi.nlm.nih.gov/pubmed/12818406)

Robinson, J.G. und Stone, N. J.: Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids. American Journal of Cardiology, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16919516)

Vedtofte, M. S. et al: Association between the intake of α-linolenic acid and the risk of CHD. British Journal of Nutrition, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24964401)

Zhao, G. et al: Dietary alpha-linolenic acid inhibits proinflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. The American Journal of Clinical Nutrition, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17284733)


Adili, R., Hawley, M. und Holinstat, M.: Regulation of platelet function and thrombosis by omega-3 and omega-6 polyunsaturated fatty acids. Prostaglandins & Other Lipid Mediators, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30266534)

Barragán, E., Breuer, D. und Döpfner, M.: Efficacy and Safety of Omega-3/6 Fatty Acids, Methylphenidate, and a Combined Treatment in Children With ADHD. Journal of Attention Disorders, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/24464327)

DiNicolantonio, J. J. und O'Keefe, J. H.: Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Heart, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30564378)

Harris, W. S.: The Omega-6:Omega-3 ratio: A critical appraisal and possible successor. Prostaglandins, Leukotrienes & Essential Fatty Acids – Journal, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29599053)

Ishak, W. M. W. et al: Topical application of omega-3-, omega-6-, and omega-9-rich oil emulsions for cutaneous wound healing in rats. Drug Delivery and Translational Research, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/29667150)

Jang, H. und Park, K.: Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clinical Nutrition, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31010701)

Molina-Leyva, I., Molina-Leyva, A. und Bueno-Cavanillas, A.: Efficacy of nutritional supplementation with omega-3 and omega-6 fatty acids in dry eye syndrome: a systematic review of randomized clinical trials. Acta Ophthalmologica, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28371493)

Pereira F. et al: Effects of omega-6/3 and omega-9/6 nutraceuticals on pain and fertility in peritoneal endometriosis in rats. Acta Cirurgica Brasileira, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31066787)

Sheppard, K. W. und Cheatham, C. L.: Omega-6/omega-3 fatty acid intake of children and older adults in the U.S.: dietary intake in comparison to current dietary recommendations and the Healthy Eating Index. Lipids in Health and Disease, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29523147)

Simopoulos, A. P.: The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18408140)

Simopoulos, A. P.: The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pacific Journal of Clinical Nutrition, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18296320)

Tortosa-Caparrós, E. et al: Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Critical Reviews in Food Science and Nutrition, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/26745681)


Alexander, J. W. et al: Dietary omega-3 and omega-9 Fatty Acids Uniquely Enhance Allograft Survival in Cyclosporine-Treated and Donor-Specific Transfusion-Treated Rats. Transplantation, 1998. (https://pubmed.ncbi.nlm.nih.gov/9625010/)

Baumann, K. H. et al: Dietary omega-3, omega-6, and omega-9 Unsaturated Fatty Acids and Growth Factor and Cytokine Gene Expression in Unstimulated and Stimulated Monocytes. A Randomized Volunteer Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999. (https://pubmed.ncbi.nlm.nih.gov/9888867/)

Chang, C. und Nickerson, M. T.: Encapsulation of Omega 3-6-9 Fatty Acids-Rich Oils Using Protein-Based Emulsions With Spray Drying. Journal of Food Science and Technology, 2018. (https://pubmed.ncbi.nlm.nih.gov/30065394/)

De Oliveira Cipriano Torres, D. et al: Effect of Maternal Diet Rich in omega-6 and omega-9 Fatty Acids on the Liver of LDL Receptor-Deficient Mouse Offspring. Birth Defects Research Part B. Developmental and Reproductive Toxicology, 2010. (https://pubmed.ncbi.nlm.nih.gov/20437476/)

Delgado, G. E. et al: Individual omega-9 Monounsaturated Fatty Acids and mortality-The Ludwigshafen Risk and Cardiovascular Health Study. Journal of Clinical Lipidology, 2017. (https://pubmed.ncbi.nlm.nih.gov/28391879/)

Galán-Arriero, I. et al: The Role of Omega-3 and Omega-9 Fatty Acids for the Treatment of Neuropathic Pain After Neurotrauma. Biochimica et Biophysica Acta Biomembranes – Journal, 2017. (https://pubmed.ncbi.nlm.nih.gov/28495596)

Gultekin, G. et al: Impact of Omega-3 and Omega-9 Fatty Acids Enriched Total Parenteral Nutrition on Blood Chemistry and Inflammatory Markers in Septic Patients. Pakistan Journal of Medical Sciences, 2014. (https://pubmed.ncbi.nlm.nih.gov/24772131/)

Ishak, W. M. W. et al: Topical Application of omega-3-, omega-6-, and omega-9-rich Oil Emulsions for Cutaneous Wound Healing in Rats. Drug Delivery and Translational Research, 2019. (https://pubmed.ncbi.nlm.nih.gov/29667150/)

Khaw, K. T. et al: Randomised Trial of Coconut Oil, Olive Oil or Butter on Blood Lipids and Other Cardiovascular Risk Factors in Healthy Men and Women. BMJ Open, 2018. (https://pubmed.ncbi.nlm.nih.gov/29511019/)

Mashavave, G. et al: Dried Blood Spot omega-3 and omega-6 Long Chain Polyunsaturated Fatty Acid Levels in 7-9 Year Old Zimbabwean Children: A Cross Sectional Study. BMC Clinical Pathology, 2016. (https://pubmed.ncbi.nlm.nih.gov/27499701/)

Medeiros-de-Moraes, I. M. et al: Omega-9 Oleic Acid, the Main Compound of Olive Oil, Mitigates Inflammation During Experimental Sepsis. Oxidative Medicine and Cellular Longevity, 2018. (https://pubmed.ncbi.nlm.nih.gov/30538802/)

Melo, R. B. et al: Antiperoxidative Properties of Oil Mixes of High Ratio Omega-9:Omega-6 and Low Ratio Omega-6:Omega-3 After Molar Extraction in Rats. Acta Cirurgica Brasileira, 2014. (https://pubmed.ncbi.nlm.nih.gov/24919045/)

Mousavi, S. N. et al: Effects of Diets Enriched in Omega-9 or Omega-6 Fatty Acids on Reproductive Process. Journal of Family and Reproductive Health, 2016. (https://pubmed.ncbi.nlm.nih.gov/27648098/)

Nocella, C. et al: Extra Virgin Olive Oil and Cardiovascular Diseases: Benefits for Human Health. Endocrine, Metabolic & Immune Disorders - Drug Targets, 2018. (https://pubmed.ncbi.nlm.nih.gov/29141571/)

Pereira, F. E. X. G. et al: Effects of omega-6/3 and omega-9/6 Nutraceuticals on Pain and Fertility in Peritoneal Endometriosis in Rats. Acta Cirurgica Brasileira, 2019. (https://pubmed.ncbi.nlm.nih.gov/31066787/)

OPC Traubenkernextrakt:

Agarwal, C. et al: Anticarcinogenic effect of a polyphenolic fraction isolated from grape seeds in human prostate carcinoma DU145 cells: modulation of mitogenic signaling and cell-cycle regulators and induction of G1 arrest and apoptosis. Molecular Carcinogenesis, 2000. (https://www.ncbi.nlm.nih.gov/pubmed/10942529)

Bagchi, D. et al: Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology, 2000. (https://www.ncbi.nlm.nih.gov/pubmed/10962138)

Bagchi, D. et al: Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. General Pharmacology, 1998. (https://www.ncbi.nlm.nih.gov/pubmed/9559333)

Belcaro, G. et al: Grape Seed Procyanidins in Pre- and Mild Hypertension: A Registry Study. Evidence-Based Complementary and Alternative Medicine, Volume 2013. (https://www.hindawi.com/journals/ecam/2013/313142/)

Bentivegna, S. S. und Whitney, K. M.: Subchronic 3-month oral toxicity study of grape seed and grape skin extracts. Food and Chemical Toxicology, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12419686)

Corder, R. et al: Oenology: red wine procyanidins and vascular health. Nature, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/17136085)

Derry, M. et al: Differential effects of grape seed extract against human colorectal cancer cell lines: the intricate role of death receptors and mitochondria. Cancer Letters, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23268334)

Frei, B.: Cardiovascular disease and nutrient antioxidants: role of low-density lipoprotein oxidation. Critical Reviews in Food Science and Nutrition, 1995. (https://www.ncbi.nlm.nih.gov/pubmed/7748483)

Joshi, S.S. et al: Amelioration of the cytotoxic effects of chemotherapeutic agents by grape seed proanthocyanidin extract. Antioxidants & Redox Signaling, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/11233153)

Kaur, M. et al: Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clinical Cancer Research, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/17062697)

Kim, J. und Wi-Young So: Effects of acute grape seed extract supplementation on muscle damage after eccentric exercise: A randomized, controlled clinical trial. Journal of Exercise Science & Fitness, 2019. Volume 17, Issue 2, S. 77 – 79. (https://www.sciencedirect.com/science/article/pii/S1728869X18303344)

Leigh, M.: Health Benefits of Grape Seed Proanthocyanidin Extract (GSPE). Nutrition Noteworthy, 2003. (https://escholarship.org/uc/item/5fc136ng)

Natella, F. et al: Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. Journal of Agricultural and Food Chemistry, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12475295)

Preuss, H.G. et al: Protective effects of a novel niacin-bound chromium complex and a grape seed proanthocyanidin extract on advancing age and various aspects of syndrome X. Annals of the New York Academy of Sciences, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12074977)

Ray, S. et al: Acute and long-term safety evaluation of a novel IH636 grape seed proanthocyanidin extract. Research Communications in Molecular Pathology and Pharmacology, 2001. (https://www.ncbi.nlm.nih.gov/pubmed/11758648)

Scalbert, A. et al: Absorption and metabolism of polyphenols in the gut and impacton health. Biomedicine & Pharmacotherapy, 2002. S. 276 – 282. (https://www.ncbi.nlm.nih.gov/pubmed/12224598)

Sivaprakasapillai, B. et al: Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism, 2009. (https://www.ncbi.nlm.nih.gov/pubmed/19608210)

Yamakoshi, J. et al: Safety evaluation of proanthocyanidin-rich extract from grape seeds. Food and Chemical Toxicology, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/11955665)

Ye, X. et al: The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Molecular and Cellular Biochemistry, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10448908)

Zhang, H. et al: The impact of grape seed extract treatment on blood pressure changes: A meta-analysis of 16 randomized controlled trials. Medicine (Baltimore), 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27537554)

Sango Meereskoralle:

Banu, J. et al: Dietary coral calcium and zeolite protects bone in a mouse model for postmenopausal bone loss. Nutrition Research, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23244542)

Falini, G. et al: Coral biomineralization: A focus on intra-skeletal organic matrix and calcification. Seminars in Cell and Developmental Biology, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26344100)

Green, D. W. et al: Natural and Synthetic Coral Biomineralization for Human Bone Revitalization. Trends in Biotechnology, 2017. (https://www.sciencedirect.com/science/article/abs/pii/S0167779916301834)

Guillemin, G. et al: Comparison of coral resorption and bone apposition with two natural corals of different porosities. Journal of Biomedical Materials Research, 1989. (https://www.ncbi.nlm.nih.gov/pubmed/2738087)

Hou, C. et al: Coral calcium hydride prevents hepatic steatosis in high fat diet-induced obese rats: A potent mitochondrial nutrient and phase II enzyme inducer. Biochemical Pharmacology, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26774456)

Ishitani, K. et al: Calcium absorption from the ingestion of coral-derived calcium by humans. Journal of Nutritional Science and Vitaminology, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10683804)

Kim, M. H.  et al: Daily calcium intake and its relation to blood pressure, blood lipids, and oxidative stress biomarkers in hypertensive and normotensive subjects. Nutrition Research and Practice, 2012. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506873/)

Langley, W. F. und D. Mann: Central nervous system magnesium deficiency. Archives of internal medicine, 1991. (https://www.ncbi.nlm.nih.gov/pubmed/2001142)

Lauritano, C. und A. Ianora: Marine Organisms with Anti-Diabetes Properties. Marine Drugs, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27916864)

Maehira, F. et al: Soluble silica and coral sand suppress high blood pressure and improve the related aortic gene expressions in spontaneously hypertensive rats. Nutrition Research, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21419319)

Soost, F. et al: Natürliches korallines Kalziumkarbonat als alternativer Ersatz bei knöchernen Defekten des Schädels. Mund-, Kiefer- und Gesichtschirurgie, 1998. (https://link.springer.com/article/10.1007/s100060050037)

Tachiki, K. et al: Capture of influenza viruses and prevention of their infection by coral mineral powder (sango mineral powder). Biocontrol Science, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22451428)

Vuola, J. et al: Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials, 1996. (https://www.ncbi.nlm.nih.gov/pubmed/8879513)

Willcox, D. C. et al: Genetic determinants of exceptional human longevity: insights from the Okinawa Centenarian Study. Journal of the American Aging Association, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/22253498)


Abdel-Wahhab, M. A., Aly, S. E.: Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis. Journal of Applied Toxicology, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/15856529)

Abdul-Ameer, N., Al-Harchan, H.: Treatment of Acne Vulgaris With Nigella Sativa Oil Lotion. The Iraqi Postgraduate Medical Journal, 2010. (https://www.semanticscholar.org/paper/Treatment-of-Acne-Vulgaris-With-Nigella-Sativa-Oil-Abdul-Ameer-Al-Harchan/3fb00c114fe99d290e485b32d413ef9a306e3478)

Ali, S. A. et al: Effect of Nigella Sativa (Kalonji) on Serum Lipid Profile. Annals Vol 18, 2012. (https://pdfs.semanticscholar.org/8835/1f90e95e0d6d6c7fef4e11900300bebda096.pdf)

Al-Sheddi, E. S. et al: Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pacific Journal of Cancer Prevention, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24568529)

Amin, B., Hosseinzadeh, H.: Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects. Planta Medica, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26366755)

Bamosa, A. O. et al: Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian Journal of Physiology and Pharmacology, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/21675032)

Benhaddou-Andaloussi, A. et al: The In Vivo Antidiabetic Activity of Nigella sativa Is Mediated through Activation of the AMPK Pathway and Increased Muscle Glut4 Content. Evidence-Based Complementary and Alternative Medicine, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21584245)

Boskabady, M. H. et al: The possible prophylactic effect of Nigella sativa seed extract in asthmatic patients. Fundamental & Clinical Pharmacology, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17868210)

Dahri, A. H. et al: Effect of Nigella sativa (kalonji) on serum cholesterol of albino rats. Journal of Ayub Medical College Abbottabad, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/16092657)

Dehkordi, F. R., Kamkhah, A. F.: Antihypertensive effect of Nigella sativa seed extract in patients with mild hypertension. Fundamental & Clinical Pharmacology, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18705755)

Effenberger-Neidnicht, K., Schobert, R.: Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemotherapy and Pharmacology, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/20582416)

Hossein, B. M., Nasim, V., Sediga, A.: The protective effect of Nigella sativa on lung injury of sulfur mustard-exposed Guinea pigs. Experimental Lung Research, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18432455)

Houghton, P. J. et al: Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Medica, 1995. (https://www.ncbi.nlm.nih.gov/pubmed/7700988)

Kooti, W. et al: Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chinese Journal of Natural Medicines, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/28236403)

Salem, E. M. et al: Comparative study of Nigella Sativa and triple therapy in eradication of Helicobacter Pylori in patients with non-ulcer dyspepsia. Saudi Journal of Gastroenterology, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20616418)

Salim, E. I.. Fukushima, S.: Chemopreventive potential of volatile oil from black cumin (Nigella sativa L.) seeds against rat colon carcinogenesis. Nutrition and Cancer, 2003. (https://www.ncbi.nlm.nih.gov/pubmed/12881014)

Yimer, E. M. et al: Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. Evidence-Based Complementary and Alternative Medicine, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31214267)


Akhtari, E. et al: Tribulus terrestris for treatment of sexual dysfunction in women: randomized double-blind placebo - controlled study. DARU Journal of Pharmaceutical Sciences, 2014. (https://pubmed.ncbi.nlm.nih.gov/24773615/)

El Din, S. F. G. et al: Tribulus terrestris versus placebo in the treatment of erectile dysfunction and lower urinary tract symptoms in patients with late-onset hypogonadism: A placebo-controlled study. Urologia, 2019. (https://pubmed.ncbi.nlm.nih.gov/30253697/)

Kumari, M. und Singh, P.: Tribulus terrestris improves metronidazole-induced impaired fertility in the male mice. African Health Sciences, 2018. (https://pubmed.ncbi.nlm.nih.gov/30602997/)

Ma, Y., Guo, Z. und Wang, X.: Tribulus terrestris extracts alleviate muscle damage and promote anaerobic performance of trained male boxers and its mechanisms: Roles of androgen, IGF-1, and IGF binding protein-3. Journal of Sport and Health Science, 2017. (https://pubmed.ncbi.nlm.nih.gov/30356644/)

Pavin, N. P. et al: Tribulus terrestris Protects against Male Reproductive Damage Induced by Cyclophosphamide in Mice. Oxidative Medicine and Cellular Longevity, 2018. (https://pubmed.ncbi.nlm.nih.gov/30228856/)

Pokrywka, A. et al: Insights into Supplements with Tribulus Terrestris used by Athletes. Journal of Human Kinetics, 2014. (https://pubmed.ncbi.nlm.nih.gov/25114736/)

Postigo, S. et al: Assessment of the Effects of Tribulus Terrestris on Sexual Function of Menopausal Women. Revista Brasileira de Ginecologia e Obstetrícia, 2016. (https://pubmed.ncbi.nlm.nih.gov/26902700/)

Qureshi, A., Naughton, D. P. und Petroczi, A.: A systematic review on the herbal extract Tribulus terrestris and the roots of its putative aphrodisiac and performance enhancing effect. Journal of Dietary Supplements, 2014. (https://pubmed.ncbi.nlm.nih.gov/24559105/)

Rogerson, S. et al: The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. The Journal of Strength and Conditioning Research, 2007. (https://pubmed.ncbi.nlm.nih.gov/17530942/)

Salgado, R. M. et al: Effect of oral administration of Tribulus terrestris extract on semen quality and body fat index of infertile men. Andrologia, 2017. (https://pubmed.ncbi.nlm.nih.gov/27401787/)

Santos Jr., C. A. et al: Tribulus terrestris versus placebo in the treatment of erectile dysfunction: A prospective, randomized, double blind study. Actas Urológicas Españolas, 2014. (https://pubmed.ncbi.nlm.nih.gov/24630840/)

Santos, H. O., Howell, S. und Teixeira, F. J.: Beyond tribulus (Tribulus terrestris L.): The effects of phytotherapics on testosterone, sperm and prostate parameters. Journal of Ethnopharmacology, 2019. (https://pubmed.ncbi.nlm.nih.gov/30790614/)

Shahid, M. et al: Phytopharmacology of Tribulus terrestris. Journal of Biological Regulators and Homeostatic Agents, 2016. (https://pubmed.ncbi.nlm.nih.gov/27655498/)

Vale, F. B. C. et al: Efficacy of Tribulus Terrestris for the treatment of premenopausal women with hypoactive sexual desire disorder: a randomized double-blinded, placebo-controlled trial. Gynecological Endocrinology, 2018. (https://pubmed.ncbi.nlm.nih.gov/29172782/)

Wang, Y. et al: Investigating the Protective Effect of Gross Saponins of Tribulus terrestris Fruit against Ischemic Stroke in Rat Using Metabolomics and Network Pharmacology. Metabolites, 2019. (https://pubmed.ncbi.nlm.nih.gov/31640179/)

Zhang, H. et al: Gross saponin of Tribulus terrestris improves erectile dysfunction in type 2 diabetic rats by repairing the endothelial function of the penile corpus cavernosum. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2019. (https://pubmed.ncbi.nlm.nih.gov/31564938/)

Zhu, W. et al: A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris. Chemistry Central Journal, 2017. (https://pubmed.ncbi.nlm.nih.gov/29086839/)

Vitamin A:

Adam, A. M. A. et al: Synthesis of a new insulin-mimetic anti-diabetic drug containing vitamin A and vanadium(IV) salt: Chemico-biological characterizations. International Journal of Immunopathology and Pharmacology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28731364)

Adjepong, M. et al: The effect of dietary intake of antioxidant micronutrients on burn wound healing: a study in a tertiary health institution in a developing country. Burns & Trauma, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/27574658)

Aghaji, A. E., Duke, R., Aghaji, U. C. W.: Inequitable coverage of vitamin A supplementation in Nigeria and implications for childhood blindness. BioMed Central, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30849959)

Alanazi, S. A. et al: Effects of short-term oral vitamin A supplementation on the ocular tear film in patients with dry eye. Clinical Ophthalmology, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31040640)

Cassani, B. et al: Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Molecular Aspects of Medicine, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22120429)

Cui, X. et al: Vitamin A Palmitate and Carbomer Gel Protects the Conjunctiva of Patients With Long-term Prostaglandin Analogs Application. Journal of Glaucoma, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26317483)

Czarnewski, P. et al: Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28098786)

Fan, X. et al: Vitamin A Deficiency Impairs Mucin Expression and Suppresses the Mucosal Immune Function of the Respiratory Tract in Chicks. PLOS ONE, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26422233)

Feng, Y. L. et al: Effects of vitamin A on growth performance and tissue retinol of starter White Pekin ducks. Poultry Science Journal, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30597070)

Fritz, H. et al: Vitamin A and retinoid derivatives for lung cancer: a systematic review and meta analysis. PLoS One, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21738614)

Gudas, L. J. und Wagner, J. A.: Retinoids regulate stem cell differentiation. Journal of Cellular Physiology, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/20836077)

Heine, G. et al: 9-cis retinoic acid modulates the type I allergic immune response. Journal of Allergy and Clinical Immunology, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/28526622)

Joubert, R. et al: Retinoic Acid Engineered Amniotic Membrane Used as Graft or Homogenate: Positive Effects on Corneal Alkali Burns. Investigative Ophthalmology & Visual Science, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28715585)

Kim, E. C. et al: The wound healing effects of vitamin A eye drops after a corneal alkali burn in rats. Acta Ophthalmologica, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23106861)

Soares, M. M. et al: Effect of vitamin A suplementation: a systematic review. Ciência & Saúde coletiva Journal, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30892504)

Sobotka, R. et al: Prognostic Importance of Vitamins A, E and Retinol-binding Protein 4 in Renal Cell Carcinoma Patients. Anticancer Research, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28668878)

Summers, J. A.: The choroid as a sclera growth regulator. Experimental Eye Research, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23528534/)

Tang, J. E. et al: Vitamin A and risk of bladder cancer: a meta-analysis of epidemiological studies. World Journal of Surgical Oncology, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24773914)

Tang, X. H. und Gudas, L. J.: Retinoids, retinoic acid receptors, and cancer. Annual Review of Pathology, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21073338)

Thompson, J. M. et al: The Role of Micronutrients in Alopecia Areata: A Review. American Journal of Clinical Dermatology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28508256)

Vitamin B6:

Bird, R. P.: The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. Advances in Food and Nutrition Research, 2018. (https://pubmed.ncbi.nlm.nih.gov/29477221/)

Choi, S. W. und Friso, S.: Vitamins B6 and Cancer. Subcellular Biochemistry, 2012. (https://pubmed.ncbi.nlm.nih.gov/22116703/)

Friso, S. et al: Vitamin B6 and Cardiovascular Disease. Subcellular Biochemistry, 2012. (https://pubmed.ncbi.nlm.nih.gov/22116704/)

Mooney, S. et al: Vitamin B6: A Long Known Compound of Surprising Complexity. Molecules, 2009. (https://pubmed.ncbi.nlm.nih.gov/19145213/)

Novin, Z. S., Ghavamzadeh, S. und Mehdizadeh, A.: The Weight Loss Effects of Branched Chain Amino Acids and Vitamin B6: A Randomized Controlled Trial on Obese and Overweight Women. International Journal for Vitamin and Nutrition Research, 2018. (https://pubmed.ncbi.nlm.nih.gov/30841823/)

Ramos, R. J. et al: Discovery of Pyridoxal Reductase Activity as Part of Human Vitamin B6 Metabolism. Biochimica et Biophysica Acta, 2019. (https://pubmed.ncbi.nlm.nih.gov/30928491/)

Rosenberg, J., Ischebeck, T. und Commichau, F. M.: Vitamin B6 Metabolism in Microbes and Approaches for Fermentative Production. Biotechnology Advances, 2017. (https://pubmed.ncbi.nlm.nih.gov/27890703/)

Spinneker, A. et al: Vitamin B6 Status, Deficiency and Its Consequences--An Overview. Nutricion Hospitalaria International Journal, 2007. (https://pubmed.ncbi.nlm.nih.gov/17260529/)

Ueland, P. M. et al: Inflammation, Vitamin B6 and Related Pathways. Molecular Aspects of Medicine, 2017. (https://pubmed.ncbi.nlm.nih.gov/27593095/)

Yagi, T. et al: Contents of All Forms of Vitamin B6, pyridoxine-β-glucoside and 4-pyridoxic Acid in Mature Milk of Japanese Women According to 4-pyridoxolactone-conversion High Performance Liquid Chromatography. Journal of Nutritional Science and Vitaminology, 2013. (https://pubmed.ncbi.nlm.nih.gov/23535534/)

Youssef, S. et al: The Role of Vitamin B6 in the Prevention of Haematological Toxic Effects of Linezolid in Patients With Cancer. Journal of Antimicrobial Chemotherapy, 2008. (https://pubmed.ncbi.nlm.nih.gov/18174198/)

Vitamin B12:

Björkegren, K., Svärdsudd, K.: Reported symptoms and clinical findings in relation to serum cobalamin, folate, methylmalonic acid and total homocysteine among elderly Swedes: a population-based study. Journal of Internal Medicine, 2003. (https://www.ncbi.nlm.nih.gov/pubmed/12974873)

Bor, M. V. et al: A daily intake of approximately 6 microg vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. The American Journal of Clinical Nutrition, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16400049)

Briani, C. et al: Cobalamin Deficiency: Clinical Picture and Radiological Findings. Nutrients, 2013. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847746/)

DGE – Deutsche Gesellschaft für Ernährung e.V.: Referenzwerwerte Vitamin B12 (Cobalamine), 2019. (https://www.dge.de/wissenschaft/referenzwerte/vitamin-b12/)

Khodabandehloo, N. et al: Determining Functional Vitamin B12 Deficiency in the Elderly. Iranian Red Crescent Medical Journal, 2015. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585337/)

Kim, G. S. et al: Effects of vitamin B12 on cell proliferation and cellular alkaline phosphatase activity in human bone marrow stromal osteoprogenitor cells and UMR106 osteoblastic cells. Metabolism, 1996. (https://www.ncbi.nlm.nih.gov/pubmed/8969275)

Kuzminski, A. M. et al: Effective treatment of cobalamin deficiency with oral cobalamin. Blood, 1998. (https://www.ncbi.nlm.nih.gov/pubmed/9694707)

Miles, L. M. et al: Impact of baseline vitamin B12 status on the effect of vitamin B12 supplementation on neurologic function in older people: secondary analysis of data from the OPEN randomised controlled trial. European Journal of Clinical Nutrition, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28225050)

N/A: Vitamin B12 and cognitive function: an evidence-based analysis. Ontario Health Technology Assessment Series, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/24379897)

Romain, M. et al: The role of Vitamin B12 in the critically ill – a review. Anaesthesia and Intensive Care Journal, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27456173)

Shipton, M. J., Thachil, J.: Vitamin B12 deficiency - A 21st century perspective. Clinical Medicine Journal, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/25824066)

Tamura, J. et al: Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clinical & Experimental Immunology, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10209501)

Toresson, L. et al: Oral Cobalamin Supplementation in Dogs with Chronic Enteropathies and Hypocobalaminemia. Journal of Veterinary Internal Medicine, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26648590)

Watanabe, F. et al: Vitamin B₁₂-containing plant food sources for vegetarians. Nutrients, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24803097)

Watanabe, F., Bito, T.: Determination of Cobalamin and Related Compounds in Foods. Journal of AOAC International, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29669618)

Vitamin D3:

Bjelakovic, G. et al: Vitamin D supplementation for prevention of cancer in adults. Cochrane Library, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24953955)

Chesdachai, S. und Tangpricha, V.: Treatment of vitamin D deficiency in cystic fibrosis. The Journal of Steroid Biochemistry and Molecular Biology, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26365559)

Heath, A. K. et al: Vitamin D Status and Mortality: A Systematic Review of Observational Studies. International Journal of Environmental Research and Public Health, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30700025)

Hewison, M.: An update on vitamin D and human immunity. Clinical Endocrinology, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/21995874)

Jääskeläinen, T. et al: Higher serum 25-hydroxyvitamin D concentrations are related to a reduced risk of depression. British Journal of Nutrition, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/25989997)

Jones, K. D. J. et al: Vitamin D deficiency causes rickets in an urban informal settlement in Kenya and is associated with malnutrition. Maternal & Child Nutrition, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/28470840)

Lappe, J. M. et al: Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. The American Journal of Clinical Nutrition, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17556697)

Manson, J. E. et al: Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. The New England Journal of Medicine, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30415629)

Mitri, J., Muraru, M. D. und Pittas, A. G.: Vitamin D and type 2 diabetes: a systematic review. European Journal of Clinical Nutrition, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21731035)

Oh, J. et al: 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation, 2009. (https://www.ncbi.nlm.nih.gov/pubmed/19667238)

Pilz, S. et al: Vitamin D and Mortality. Anticancer Research, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26977039)

Ritu, G. und Gupta, A.: Fortification of foods with vitamin D in India. Nutrients, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25221975)

Ruohola, J. P. et al: Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. Journal of Bone and Mineral Research, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16939407)

Salehpour, A. et al: A 12-week double-blind randomized clinical trial of vitamin D₃ supplementation on body fat mass in healthy overweight and obese women. Nutrition Journal, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22998754)

Shuler, F. D. et al: Sports health benefits of vitamin d. Sports Health, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/24179588)

Urashima, M. et al: Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. The American Journal of Clinical Nutrition, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20219962)

Wang, T. J. et al: Vitamin D deficiency and risk of cardiovascular disease. Circulation, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18180395)

Vitamin E:

Abraham, A. et al: Vitamin E and Its Anticancer Effects. Critical Reviews in Food Science and Nutrition, 2019. (https://pubmed.ncbi.nlm.nih.gov/29746786/)

Cardenas, E. und Ghosh, R: Vitamin E: A Dark Horse at the Crossroad of Cancer Management. Biochemical Pharmacology, 2013. (https://pubmed.ncbi.nlm.nih.gov/23919929/)

Di Vincenzo, A. et al: Antioxidant, Anti-Inflammatory, and Metabolic Properties of Tocopherols and Tocotrienols: Clinical Implications for Vitamin E Supplementation in Diabetic Kidney Disease. International Journal of Molecular Sciences, 2019. (https://pubmed.ncbi.nlm.nih.gov/31618817/)

Jiang, Q.: Natural Forms of Vitamin E: Metabolism, Antioxidant, and Anti-Inflammatory Activities and Their Role in Disease Prevention and Therapy. Free Radical Biology and Medicine, 2014. (https://pubmed.ncbi.nlm.nih.gov/24704972/)

Kline, K., Yu, W. und Sanders, B. G.: Vitamin E and Breast Cancer. Journal of Nutrition, 2004. (https://pubmed.ncbi.nlm.nih.gov/15570054/)

Lee, G. Y. und Han, S. N.: The Role of Vitamin E in Immunity. Nutrients, 2018. (https://pubmed.ncbi.nlm.nih.gov/30388871/)

Lloret, A. et al: The Effectiveness of Vitamin E Treatment in Alzheimer's Disease. International Journal of Molecular Sciences, 2019. (https://pubmed.ncbi.nlm.nih.gov/30781638/)

Miyazawa, T. et al: Vitamin E: Regulatory Redox Interactions. IUBMB Life, 2019. (https://pubmed.ncbi.nlm.nih.gov/30681767/)

Peh, H. Y. et al: Vitamin E Therapy Beyond Cancer: Tocopherol Versus Tocotrienol. Pharmacology & Therapeutics, 2016. (https://pubmed.ncbi.nlm.nih.gov/26706242/)

Pfluger, P. et al: Vitamin E: Underestimated as an Antioxidant. Redox Report, 2004. (https://pubmed.ncbi.nlm.nih.gov/15606977/)

Sozen, E., Demirel, T. und Ozer, N. K.: Vitamin E: Regulatory Role in the Cardiovascular System. IUBMB Life, 2019. (https://pubmed.ncbi.nlm.nih.gov/30779288/)

Yang, C. S., Suh, N. und Kong, A. N. T.: Does Vitamin E Prevent or Promote Cancer? Cancer Prevention Research, 2012. (https://pubmed.ncbi.nlm.nih.gov/22490437/)

Yoshida, Y. et al: Chemical Reactivities and Physical Effects in Comparison Between Tocopherols and Tocotrienols: Physiological Significance and Prospects as Antioxidants. Journal of Bioscience and Bioengineering, 2007. (https://pubmed.ncbi.nlm.nih.gov/18215628/)

Vitamin K2:

Beulens, J. W. et al: Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20424220)

Beulens, J. W. et al: The role of menaquinones (vitamin K₂) in human health. British Journal of Nutrition, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23590754)

Booth, S. L. et al: Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. The American Journal of Clinical Nutrition, 2000. (https://www.ncbi.nlm.nih.gov/pubmed/10799384)

Booth, S. L. et al: Vitamin K intake and bone mineral density in women and men. The American Journal of Clinical Nutrition, 2003. (https://www.ncbi.nlm.nih.gov/pubmed/12540415)

Booth, S. L.: Vitamin K: food composition and dietary intakes. Food & Nutrition Research, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22489217/)

Dowd, P. et al: The mechanism of action of vitamin K. Annual Review of Nutrition, 1995. (https://www.ncbi.nlm.nih.gov/pubmed/8527228)

Dragh, M. A. et al: Vitamin K2 Prevents Lymphoma in Drosophila. Scientific Reports, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/29213118)

Ferland, G.: The discovery of vitamin K and its clinical applications. Annals of Nutrition and Metabolism, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23183291)

Feskanich, D. et al: Vitamin K intake and hip fractures in women: a prospective study. The American Journal of Clinical Nutrition, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/9925126)

Flore, R. et al: Something more to say about calcium homeostasis: the role of vitamin K2 in vascular calcification and osteoporosis. European Review for Medical and Pharmacological Sciences, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/24089220)

Gancheva, S. M. und Zhelyazkova-Savova, M. D.: Vitamin K2 Improves Anxiety and Depression but not Cognition in Rats with Metabolic Syndrome: a Role of Blood Glucose? Folia Medica, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/28068285)

Iwamoto, J.: Vitamin K₂ therapy for postmenopausal osteoporosis. Nutrients, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24841104)

Karl, J. P. et al: Fecal menaquinone profiles of overweight adults are associated with gut microbiota composition during a gut microbiota-targeted dietary intervention. The American Journal of Clinical Nutrition, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26016865)

Kurnatowska, I. et al: Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3-5. Polish Archives of Internal Medicine, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26176325)

Myneni, V. D. und Mezey, E.: Regulation of bone remodeling by vitamin K2. Journal of Oral Diseases, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/27976475)

Nimptsch, K., Rohrmann, S. und Linseisen, J.: Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). The American Journal of Clinical Nutrition, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18400723/)

Okano, T. et al: Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. The Journal of Biological Chemistry, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18083713/)

Sato, T., Schurgers, L. J. und Uenishi K.: Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutrition Journal, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23140417/)

Shearer, M. J., Fu, X. und Booth, S. L.: Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Advances in Nutrition, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22516726)

Walther, B. et al: Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Advances in Nutrition, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23858094)

Zhang, Y. et al: Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: a Potential Mechanism for Its Protective Effects in Glucocorticoid-induced Osteonecrosis of the Femoral Head in a Rat Model. International Journal of Biological Sciences, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27313492)

Zhang, Y. et al: Vitamin K2 promotes mesenchymal stem cell differentiation by inhibiting miR‑133a expression. Molecular Medicine Reports, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28447758)


Agren, M. S., Franzén, L.: Influence of zinc deficiency on breaking strength of 3-week-old skin incisions in the rat. Acta chirurgica Scandinavica, 1990. (https://www.ncbi.nlm.nih.gov/pubmed/2264423)

Arsenault, J. E. und Brown, K. H.: Zinc intake of US preschool children exceeds new dietary reference intakes. The American Journal of Clinical Nutrition, 2003. (https://academic.oup.com/ajcn/article/78/5/1011/4677484)

Chabosseau, P., Rutter, G.A.: Zinc and diabetes. Archives of Biochemistry and Biophysics, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27262257)

Gammoh, N. Z. und Rink, L.: Zinc in Infection and Inflammation. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28629136)

Gowda, D., Premalatha, V., Imtiyaz, D.B.: Prevalence of Nutritional Deficiencies in Hair Loss among Indian Participants: Results of a Cross-sectional Study. International Journal of Trichology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28932059)

Hawkins, T. et al: Whole body monitoring and other studies of zinc-65 metabolism in patients with dermatological diseases. Clinical and Experimental Dermatology, 1976. (https://www.ncbi.nlm.nih.gov/pubmed/824079)

Hojyo, S. und Fukada, T.: Roles of Zinc Signaling in the Immune System. Journal of Immunology Research, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27872866)

Hunt, C. D. et al: Effects of dietary zinc depletion on seminal volume and zinc loss, serum testosterone concentrations, and sperm morphology in young men. The American Journal of Clinical Nutrition, 1992. (https://www.ncbi.nlm.nih.gov/pubmed/1609752)

Jaryum, K. H., Okoye, Z. S. C., Stoecker, B.: Hair Zinc: an Index for Zinc Status in Under-Five Children from Low-Income Communities in Kanam Area of North-Central Nigeria. Biological Trace Element Research, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/28849356)

King, J. C.: Zinc: an essential but elusive nutrient. The American Journal of Clinical Nutrition, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21715515)

Lansdown, A. B. et al: Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair and Regeneration, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17244314)

Maserejian, N. N., Hall, S. A., McKinlay, J. B.: Low dietary or supplemental zinc is associated with depression symptoms among women, but not men, in a population-based epidemiological survey. Journal of Affective Disorders, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/22030131)

Mittmann, U.: Bioverfügbarkeit von Zinkpräparaten. Deutsche Apotheker Zeitung, 2001. (https://www.deutsche-apotheker-zeitung.de/daz-az/2001/daz-50-2001/uid-5197)

Mocchegiani, E. et al: Zinc: dietary intake and impact of supplementation on immune function in elderly. Age Journal, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/22222917)

Ogawa, Y. et al: Zinc and Skin Disorders. Nutrients, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29439479)

Science, M. et al: Zinc for the treatment of the common cold: a systematic review and meta-analysis of randomized controlled trials. Canadian Medical Association Journal, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22566526)

Swardfager, W. et al: Zinc in depression: a meta-analysis. Biological Psychiatry, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23806573)

Wessels, I., Maywald, M., Rink, L.: Zinc as a Gatekeeper of Immune Function. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/29186856)

Wong, C. P., Rinaldi, N. A., Ho, E.: Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Molecular Nutrition and Food Research, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/25656040)