Ewing, L. E. et al: Hepatotoxicity of a Cannabidiol-Rich Cannabis Extract in the Mouse Model. Molecules, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31052254)

Hammell, D. C. et al: Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis. European Journal of Pain, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26517407)

Iffland, K., F. Grotenhermen: An Update on Safety and Side Effects of Cannabidiol: A Review of Clinical Data and Relevant Animal Studies. Cannabis and Cannabinoid Research, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28861514)

Karler, R. et al: The anticonvulsant activity of cannabidiol and cannabinol. Life Sciences, 1973. (https://www.sciencedirect.com/science/article/abs/pii/0024320573901410)

Kim, J. L. et al: Cannabidiol Enhances the Therapeutic Effects of TRAIL by Upregulating DR5 in Colorectal Cancer. Cancers, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31075907)

Lee, J. L. C. et al: Cannabidiol regulation of emotion and emotional memory processing: relevance for treating anxiety-related and substance abuse disorders. British Journal of Pharmacology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28268256)

McGrath, S. et al: Randomized blinded controlled clinical trial to assess the effect of oral cannabidiol administration in addition to conventional antiepileptic treatment on seizure frequency in dogs with intractable idiopathic epilepsy. Journal of the American Veterinary Medical Association, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31067185)

Morgan, C. J. et al: Cannabidiol reduces cigarette consumption in tobacco smokers: preliminary findings. Addictive Behaviors, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23685330)

N/A: The health effects of cannabis and cannabinoids. The National Academies of Sciences, Engineering, Medicine, 2017. (https://www.nap.edu/resource/24625/Cannabis_committee_conclusions.pdf)

Oláh, A. et al: Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. The Journal of Clinical Investigation, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25061872)

Philpott, H. T. et al: Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28885454)

Rosenberg, E. C. et al: Cannabinoids and Epilepsy. Neurotherapeutics, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26282273)

Turcotte, C. et al: Impact of Cannabis, Cannabinoids, and Endocannabinoids in the Lungs. Frontiers in Pharmacology, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27695418)

Wheless, J. W. et al: Pharmacokinetics and Tolerability of Multiple Doses of Pharmaceutical‑Grade Synthetic Cannabidiol in Pediatric Patients with Treatment‑Resistant Epilepsy. CNS Drugs, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31049885)

World Health Organization: Cannabidiol (CBD) Critical Review Report, 2018. (https://www.who.int/medicines/access/controlled-substances/CannabidiolCriticalReview.pdf)

Xiong, W. et al: Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. Journal of Experimental Medicine, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22585736)

Zieba, J. et al: Cannabidiol (CBD) reduces anxiety-related behavior in mice via an FMRP1-independent mechanism. Pharmacology, Biochemistry and Behavior, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31063743)

CBD Öl – Studie Angststörungen:

Decker, J. et al: Lehrstuhl- & universitätsübergreifende Studie zur Wirkung von CBD bei Patienten mit Angststörung. Cannabidiol Studie, 2019. (https://www.cbd-anxiety-study.com/)


Adeneye, A. A.: Methanol seed extract of Citrus paradisi Macfad lowers blood glucose, lipids and cardiovascular disease risk indices in normal Wistar rats. Nigerian Quarterly Journal of Hospital Medicine, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12165190)

Bernatoniene, J. et al: A combination of grapefruit seed extract and concentrated cranberry juice as a potential antimicrobial preservative for the improvement of microbiological stability of hypromellose gel. Česká a slovenská farmacie, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/24237471)

Cvetnić, Z. und Vladimir-Knezević, S.: Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharmaceutica, 2004. (https://www.ncbi.nlm.nih.gov/pubmed/15610620)

Dembinski, A. et al: Extract of grapefruit-seed reduces acute pancreatitis induced by ischemia/reperfusion in rats: possible implication of tissue antioxidants. Journal of Physiology and Pharmacology, 2004. (https://www.ncbi.nlm.nih.gov/pubmed/15613745)

Edwards-Jones, V. et al: The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns, 2004. (https://www.ncbi.nlm.nih.gov/pubmed/15555788)

Hung, W. L. et al: Chemistry and health effects of furanocoumarins in grapefruit. Journal of Food and Drug Analysis, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28911545)

Kang, S. T. et al: Effects of Grapefruit Seed Extract on Oxidative Stability and Quality Properties of Cured Chicken Breast. Korean Journal for Food Science of Animal Resources, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28747829)

Komura, M. et al: Inhibitory effect of grapefruit seed extract (GSE) on avian pathogens. The Journal of Veterinary Medical Science, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30713281)

Mandadi, K. K. et al: Red Mexican grapefruit: a novel source for bioactive limonoids and their antioxidant activity. Zeitschrift für Naturforschung, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17542482)

Ou, M. C. et al: The Composition, Antioxidant and Antibacterial Activities of Cold-Pressed and Distilled Essential Oils of Citrus paradisi and Citrus grandis (L.) Osbeck. Evidence-Based Complementary and Alternative Medicine, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26681970)

Oyelami, O. A. et al: The effectiveness of grapefruit (Citrus paradisi) seeds in treating urinary tract infections. Journal of Alternative and Complementary Medicine, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/15865506)

Reagor, L. et al: The effectiveness of processed grapefruit-seed extract as an antibacterial agent: I. An in vitro agar assay. Journal of Alternative and Complementary Medicine, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12165190)

Semprini, P. et al: Antibacterial properties of grapefruit seed extract against Paenibacillus larvae subsp. larvae. Veterinaria Italiana, 2004. (https://www.ncbi.nlm.nih.gov/pubmed/20437392)

Zayachkivska, O. S. et al: Gastroprotective effects of flavonoids in plant extracts. Journal of Physiology and Pharmacology, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/15800396)


Brien, S. et al: Systematic review of the nutritional supplement Perna Canaliculus (green-lipped mussel) in the treatment of osteoarthritis. QJM, 2008, S. 167-79. (https://www.ncbi.nlm.nih.gov/pubmed/18222988)

Bui, Linh M., Bierer, Tiffany L.: Influence of Green Lipped Mussels (Perna canaliculus) in Alleviating Signs of Arthritis in Dogs. Veterinary Therapeutics, Vol. 2, No. 2, 2001. Vernon, USA. (https://www.ncbi.nlm.nih.gov/pubmed/19753702)

Cayzer, J. et al: A randomised, double‐blinded, placebo‐controlled study on the efficacy of a unique extract of green‐lipped mussel (Perna canaliculus) in horses with chronic fetlock lameness attributed to osteoarthritis. Equine Veterinary Journal, Vol. 44, Issue 4 2011. (https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2042-3306.2011.00455.x)

Coulson, S. et al: Green-lipped mussel extract (Perna canaliculus) and glucosaminesulphate in patients with knee osteoarthritis: therapeutic efficacyand effects on gastrointestinal microbiota profiles. Inflammopharmacology, July 2012. Australia. (https://www.researchgate.net/publication/229437402)

Emelyanov, A. et al: Treatment of asthma with lipid extract of New Zealand green-lipped mussel: a randomised clinical trial. European Respiratory Journal 2002. Therapeutic Clinic, Pavlov Medical University Hospital, St. Petersburg, Russland. (https://www.ncbi.nlm.nih.gov/pubmed/12358334)

Gibson et al: Perna canaliculus in the treatment of arthritis. Hong Kong, 2000. Appendix B, S. 7-11. (https://www.ncbi.nlm.nih.gov/pubmed/7003577)

Gibson, SLM et al: The treatment of arthritis with a lipid extract of Perna canaliculus: a randomized trial. Complementary Therapies in Medicine 1998, Vol. 6 Issue 3. S. 122-126. (https://www.sciencedirect.com/science/article/pii/S0965229998800034)

Halpern, Georges M.: Anti-inflammatory effects of a stabilized lipid extrac of Perna canaliculus. 2000. (https://www.ncbi.nlm.nih.gov/pubmed/11094640)

Rainsford, KD, Whitehouse MW: Gastroprotective and anti-inflammatory properties of greenlipped mussel (Perna canaliculus) preparation. Arzneimittelforschung 1980. (https://www.ncbi.nlm.nih.gov/pubmed/7194074)

Rusk, Adam B.: Larval development of the New Zealand mussel Perna canaliculus and effects of cryopreservation. Thesis. Auckland University of Technology, Auckland 2012. (https://openrepository.aut.ac.nz/handle/10292/5262)


Bahadoran, Z. et al: Dietary L-arginine intake and the incidence of coronary heart disease: Tehran lipid and glucose study. Nutrition & Metabolism, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26985233)

Bailey, S. J. et al: Acute L-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. Journal of Applied Physiology, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20724562)

Barassi, A. et al: Levels of l-arginine and l-citrulline in patients with erectile dysfunction of different etiology. Andrology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28178400)

Blanc, R. S. und Richard, S.: Regenerating muscle with arginine methylation. Transcription, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28301308)

Chen, J. et al: Effect of oral administration of high-dose nitric oxide donor L-arginine in men with organic erectile dysfunction: results of a double-blind, randomized, placebo-controlled study. BJU International, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10233492)

Kattenstroth, J. C.: Einfluss von L-Arginin auf die Gefäßgesundheit. Pharmazeutische Zeitung, Ausgabe 37/2017. (https://www.pharmazeutische-zeitung.de/ausgabe-372017/einfluss-von-l-arginin-auf-die-gefaessgesundheit/)

McNeal, C. J. et al: Safety and Effectiveness of Arginine in Adults. Journal of Nutrition, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27934649)

Morris, S. M.: Arginine Metabolism Revisited. Journal of Nutrition, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27934648)

Piatti, P. M. et al: Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care, 2001. (https://www.ncbi.nlm.nih.gov/pubmed/11347747)

Rosenthal, M. D. et al: Parenteral or Enteral Arginine Supplementation Safety and Efficacy. Journal of Nutrition, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27934650)

Ströhle, A. und Hahn, A.: Arginin bei Atherosklerose. Deutsche Apotheker Zeitung, Ausgabe 20/2012. (https://www.deutsche-apotheker-zeitung.de/daz-az/2012/daz-20-2012/arginin-bei-atherosklerose)

Suzuki, T. et al: The effects on plasma L-arginine levels of combined oral L-citrulline and L-arginine supplementation in healthy males. Bioscience, Biotechnology, and Biochemistry, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/27667025)

Venho, B. et al: Arginine intake, blood pressure, and the incidence of acute coronary events in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. The American Journal of Clinical Nutrition, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12145007)


Brooks, N. A. et al: Beneficial effects of Lepidium meyenii (Maca) on psychological symptoms and measures of sexual dysfunction in postmenopausal women are not related to estrogen or androgen content. Menopause Journal, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18784609)

Dording, C. M. et al: A double-blind, randomized, pilot dose-finding study of maca root (L. meyenii) for the management of SSRI-induced sexual dysfunction. CNS Neuroscience & Therapeutics, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18801111)

Dostert, N. et al: Factsheet: datos botánicos de Maca. Lepidium meyenii Walp. San Marcos National University - Museum of Natural History, 2009. (https://www.researchgate.net/publication/43178820_Factsheet_datos_botanicos_de_Maca_Lepidium_meyenii_Walp)

Gao, X. C. et al: Screening of the Active Component Promoting Leydig Cell Proliferation from Lepidium meyenii Using HPLC-ESI-MS/MS Coupled with Multivariate Statistical Analysis. Molecules, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31163647)

Gonzales, G. F. et al: Maca (Lepidium meyenii Walp), Una Revisión Sobre Sus Propiedades Biológicas. Revista Peruana de Medicina Experimental y Salud Pública, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24718534)

Gonzales, G. F.: Ethnobiology and Ethnopharmacology of Lepidium meyenii (Maca), a Plant from the Peruvian Highlands. Evidence-Based Complementary and Alternative Medicine, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/21977053)

Li, J. et al: Anti-fatigue activity of polysaccharide fractions from Lepidium meyenii Walp. (maca). International Journal of Biological Macromolecules, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/27840217)

Melnikovova, I. et al: Effect of Lepidium meyenii Walp. on Semen Parameters and Serum Hormone Levels in Healthy Adult Men: A Double-Blind, Randomized, Placebo-Controlled Pilot Study. Evidence-Based Complementary and Alternative Medicine, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26421049/)

Nuñez, D. et al: Red Maca (Lepidium meyenii), a Plant from the Peruvian Highlands, Promotes Skin Wound Healing at Sea Level and at High Altitude in Adult Male Mice. High Altitude Medicine & Biology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28846044)

Rodríguez-Huamán, Á. et al: Antioxidant and neuroprotector effect of Lepidium meyenii (maca) methanol leaf extract against 6-hydroxy dopamine (6-OHDA)-induced toxicity in PC12 cells. Toxicology Mechanisms and Methods, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28007001)

Shin, B. C. et al: Maca (L. meyenii) for improving sexual function: a systematic review. BMC Complementary and Alternative Medicine, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20691074)

Stojanovska, L. et al: Maca reduces blood pressure and depression, in a pilot study in postmenopausal women. Climacteric, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/24931003)

Sun, Y. et al: Composition analysis and antioxidant activity of essential oils, lipids and polysaccharides in different phenotypes of Lepidium meyenii. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30241071)

Tafuri, S. et al: Chemical Analysis of Lepidium meyenii (Maca) and Its Effects on Redox Status and on Reproductive Biology in Stallions. Molecules, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31126050)

Yang, Q. et al: Effects of macamides on endurance capacity and anti-fatigue property in prolonged swimming mice. Pharmaceutical Biology, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26453017)

Zhang, L. et al: Protective effect of polysaccharide from maca (Lepidium meyenii) on Hep-G2 cells and alcoholic liver oxidative injury in mice. International Journal of Biological Macromolecules, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28174084)

Zhang, Y., Zhou, F. und Ge, F.: Effects of combined extracts of Lepidium meyenii and Allium tuberosum Rottl. on erectile dysfunction. BMC Complementary and Alternative Medicine, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31215433)

Zheng, W. et al: Lepidium meyenii Walp Exhibits Anti-Inflammatory Activity against ConA-Induced Acute Hepatitis. Mediators of Inflammation, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30647537)

Zheng, Y. et al: Two macamide extracts relieve physical fatigue by attenuating muscle damage in mice. Journal of the Science of Food and Agriculture, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30120787)


Castiglioni, S. et al: Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/23912329)

Chen, H. Y. et al: Magnesium enhances exercise performance via increasing glucose availability in the blood, muscle, and brain during exercise. PLOS ONE, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24465574)

Dibaba, D. et al: Magnesium intake and incidence of pancreatic cancer: the VITamins and Lifestyle study. British Journal of Cancer, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26554653)

Galli, S. et al: The effect of magnesium on early osseointegration in osteoporotic bone: a histological and gene expression investigation. Osteoporosis International, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28349251)

Golf, S.: Pharmakokinetik und Bioverfügbarkeit von Magnesium-Verbindungen. Pharmazeutische Zeitung, 2006. (https://www.pharmazeutische-zeitung.de/ausgabe-112006/pharmakokinetik-und-bioverfuegbarkeit-von-magnesium-verbindungen/)

Gröber, U., Schmidt, J. und Kisters, K.: Magnesium in Prevention and Therapy. Nutrients, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26404370)

Guerrera, M. P., Volpe, S. L. und Mao, J. J.: Therapeutic uses of magnesium. American Family Physician, 2009. (https://www.ncbi.nlm.nih.gov/pubmed/19621856)

Houston, M.: The role of magnesium in hypertension and cardiovascular disease. The Journal of Clinical Hypertension, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/22051430)

Kumar, G. et al: Magnesium improves cisplatin-mediated tumor killing while protecting against cisplatin-induced nephrotoxicity. American Journal of Physiology-Renal Physiology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28424213)

Volpe, S. L.: Magnesium and the Athlete. Current Sports Medicine Reports, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26166051)

Volpe, S. L.: Magnesium in disease prevention and overall health. Advances in Nutrition, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23674807)

Welch, A.A., Skinner, J. und Hickson, M.: Dietary Magnesium May Be Protective for Aging of Bone and Skeletal Muscle in Middle and Younger Older Age Men and Women: Cross-Sectional Findings from the UK Biobank Cohort. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/29084183)


Abenavoli, L. et al: Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytotherapy Research, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/30080294)

Abenavoli, L. et al: Milk Thistle in Liver Diseases: Past, Present, Future. Phytotherapy Research, 2010. (https://www.researchgate.net/publication/44689105_Milk_Thistle_in_Liver_Diseases_Past_Present_Future)

Albrecht, M. et al: Die Therapie toxischer Leberschäden mit Legalon. Zeitschrift für Klinische Medizin, 1992. Ausgabe 47, S. 87–92. (Google Scholar)

Comelli, MC et al: Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy. Integrative Cancer Therapies, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17548791)

Federico, A. et al: Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28125040)

Ferenci, P.: Silymarin in the treatment of liver diseases: What is the clinical evidence?. Clinical Liver Disease Journal, 2016. (https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/cld.522)

Karimi, G. et al: “Silymarin”, a Promising Pharmacological Agent for Treatment of Diseases. Iranian Journal of Basic Medical Sciences, 2011. S. 308–317. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586829/)

Ladas, EJ et al: A randomized, controlled, double-blind, pilot study of milk thistle for the treatment of hepatotoxicity in childhood acute lymphoblastic leukemia (ALL). Cancer, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20014183)

Ladas, EJ et al: Milk Thistle Is Associated with Reductions in Liver Function Tests (LFTs) in Children Undergoing Therapy for Acute Lymphoblastic Leukemia (ALL). Society of Integrative Oncology, 2006. (http://www.bloodjournal.org/content/108/11/1882)

Li Volti, G. et al: Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovascular Diabetology, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21756303)

Mulrow, C., V. Lawrence: Milk Thistle: Effects on Liver Disease and Cirrhosis and Clinical Adverse Effects. Evidence Report. Agency for Healthcare Research and Quality, 2000. (https://www.ncbi.nlm.nih.gov/books/NBK11896/)

Post-White, J. et al: Advances in the Use of Milk Thistle (Silybum marianum). Integrative Cancer Therapies, 2007. S. 104–110. (https://www.ncbi.nlm.nih.gov/pubmed/17548789)

Reisinger, N. et al: Milk thistle extract and silymarin inhibit lipopolysaccharide induced lamellar separation of hoof explants in vitro. Toxins (Basel), 2014. (https://www.ncbi.nlm.nih.gov/pubmed/25290524)

Šuk, J. et al: Isolated Silymarin Flavonoids Increase Systemic and Hepatic Bilirubin Concentrations and Lower Lipoperoxidation in Mice. Oxidative Medicine and Cellular Longevity, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/30891115)

Surai, P.: Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel), 2015. S. 204–247. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665566/)

Tamayo, C, S. Diamond: Review of clinical trials evaluating safety and efficacy of milk thistle (Silybum marianum [L.] Gaertn.). Integrative Cancer Therapies, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17548793)

Varzi, HN et. al: Effect of silymarin and vitamin E on gentamicin-induced nephrotoxicity in dogs. Journal of Veterinary Pharmacology and Therapeutics, 2007. Volume 30, Issue 5, S. 477-481. (https://www.ncbi.nlm.nih.gov/pubmed/17803742)

Omega-3 Fischöl:

Albert, C. M. et al: Dietary alpha-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation Journal, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/16301356)

Bang, H. O., Dyerberg, J. und Hjøorne N.: The composition of food consumed by Greenland Eskimos. Acta Medica Scandinavica, 1976. (https://www.ncbi.nlm.nih.gov/pubmed/961471)

Brinton, E. A. und Mason, R. P.: Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA). Lipids in Health and Disease, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28137294)

Costantini, L. et al: Impact of Omega-3 Fatty Acids on the Gut Microbiota. International Journal of Molecular Sciences, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/29215589)

Ferucci, L. et al: Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. The Journal of Clinical Endocrinology and Metabolism, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16234304)

Hu, F. B. et al: Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. The American Journal of Clinical Nutrition, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10584044)

Joshi, K. et al: Supplementation with flax oil and vitamin C improves the outcome of Attention Deficit Hyperactivity Disorder (ADHD). Prostaglandins, Leukotrienes & Essential Fatty Acids, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16314082)

Lemaitre, R. N. et al: n-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. The American Journal of Clinical Nutrition, 2003. (https://www.ncbi.nlm.nih.gov/pubmed/12540389)

Mori, T. A. et al: Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10454450)

Mori, T. A.: Omega-3 fatty acids and hypertension in humans. Clinical and Experimental Pharmacology and Physiology, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16922818)

Mozaffarian, D. et al: Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation Journal, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/15630029)

Rajaei, E. et al: The Effect of Omega-3 Fatty Acids in Patients With Active Rheumatoid Arthritis Receiving DMARDs Therapy: Double-Blind Randomized Controlled Trial. Global Journal of Health Science, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26925896)

Rallidis, L. S. et al: Dietary alpha-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients. Atherosclerosis Journal, 2003. (https://www.ncbi.nlm.nih.gov/pubmed/12818406)

Robinson, J.G. und Stone, N. J.: Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids. American Journal of Cardiology, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16919516)

Vedtofte, M. S. et al: Association between the intake of α-linolenic acid and the risk of CHD. British Journal of Nutrition, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24964401)

Zhao, G. et al: Dietary alpha-linolenic acid inhibits proinflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. The American Journal of Clinical Nutrition, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17284733)

OPC Traubenkernextrakt:

Agarwal, C. et al: Anticarcinogenic effect of a polyphenolic fraction isolated from grape seeds in human prostate carcinoma DU145 cells: modulation of mitogenic signaling and cell-cycle regulators and induction of G1 arrest and apoptosis. Molecular Carcinogenesis, 2000. (https://www.ncbi.nlm.nih.gov/pubmed/10942529)

Bagchi, D. et al: Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology, 2000. (https://www.ncbi.nlm.nih.gov/pubmed/10962138)

Bagchi, D. et al: Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. General Pharmacology, 1998. (https://www.ncbi.nlm.nih.gov/pubmed/9559333)

Belcaro, G. et al: Grape Seed Procyanidins in Pre- and Mild Hypertension: A Registry Study. Evidence-Based Complementary and Alternative Medicine, Volume 2013. (https://www.hindawi.com/journals/ecam/2013/313142/)

Bentivegna, S. S. und Whitney, K. M.: Subchronic 3-month oral toxicity study of grape seed and grape skin extracts. Food and Chemical Toxicology, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12419686)

Corder, R. et al: Oenology: red wine procyanidins and vascular health. Nature, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/17136085)

Derry, M. et al: Differential effects of grape seed extract against human colorectal cancer cell lines: the intricate role of death receptors and mitochondria. Cancer Letters, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23268334)

Frei, B.: Cardiovascular disease and nutrient antioxidants: role of low-density lipoprotein oxidation. Critical Reviews in Food Science and Nutrition, 1995. (https://www.ncbi.nlm.nih.gov/pubmed/7748483)

Joshi, S.S. et al: Amelioration of the cytotoxic effects of chemotherapeutic agents by grape seed proanthocyanidin extract. Antioxidants & Redox Signaling, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/11233153)

Kaur, M. et al: Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clinical Cancer Research, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/17062697)

Kim, J. und Wi-Young So: Effects of acute grape seed extract supplementation on muscle damage after eccentric exercise: A randomized, controlled clinical trial. Journal of Exercise Science & Fitness, 2019. Volume 17, Issue 2, S. 77 – 79. (https://www.sciencedirect.com/science/article/pii/S1728869X18303344)

Leigh, M.: Health Benefits of Grape Seed Proanthocyanidin Extract (GSPE). Nutrition Noteworthy, 2003. (https://escholarship.org/uc/item/5fc136ng)

Natella, F. et al: Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. Journal of Agricultural and Food Chemistry, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12475295)

Preuss, H.G. et al: Protective effects of a novel niacin-bound chromium complex and a grape seed proanthocyanidin extract on advancing age and various aspects of syndrome X. Annals of the New York Academy of Sciences, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/12074977)

Ray, S. et al: Acute and long-term safety evaluation of a novel IH636 grape seed proanthocyanidin extract. Research Communications in Molecular Pathology and Pharmacology, 2001. (https://www.ncbi.nlm.nih.gov/pubmed/11758648)

Scalbert, A. et al: Absorption and metabolism of polyphenols in the gut and impacton health. Biomedicine & Pharmacotherapy, 2002. S. 276 – 282. (https://www.ncbi.nlm.nih.gov/pubmed/12224598)

Sivaprakasapillai, B. et al: Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism, 2009. (https://www.ncbi.nlm.nih.gov/pubmed/19608210)

Yamakoshi, J. et al: Safety evaluation of proanthocyanidin-rich extract from grape seeds. Food and Chemical Toxicology, 2002. (https://www.ncbi.nlm.nih.gov/pubmed/11955665)

Ye, X. et al: The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Molecular and Cellular Biochemistry, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10448908)

Zhang, H. et al: The impact of grape seed extract treatment on blood pressure changes: A meta-analysis of 16 randomized controlled trials. Medicine (Baltimore), 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27537554)

Sango Meereskoralle:

Banu, J. et al: Dietary coral calcium and zeolite protects bone in a mouse model for postmenopausal bone loss. Nutrition Research, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/23244542)

Falini, G. et al: Coral biomineralization: A focus on intra-skeletal organic matrix and calcification. Seminars in Cell and Developmental Biology, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/26344100)

Green, D. W. et al: Natural and Synthetic Coral Biomineralization for Human Bone Revitalization. Trends in Biotechnology, 2017. (https://www.sciencedirect.com/science/article/abs/pii/S0167779916301834)

Guillemin, G. et al: Comparison of coral resorption and bone apposition with two natural corals of different porosities. Journal of Biomedical Materials Research, 1989. (https://www.ncbi.nlm.nih.gov/pubmed/2738087)

Hou, C. et al: Coral calcium hydride prevents hepatic steatosis in high fat diet-induced obese rats: A potent mitochondrial nutrient and phase II enzyme inducer. Biochemical Pharmacology, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26774456)

Ishitani, K. et al: Calcium absorption from the ingestion of coral-derived calcium by humans. Journal of Nutritional Science and Vitaminology, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10683804)

Kim, M. H.  et al: Daily calcium intake and its relation to blood pressure, blood lipids, and oxidative stress biomarkers in hypertensive and normotensive subjects. Nutrition Research and Practice, 2012. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506873/)

Langley, W. F. und D. Mann: Central nervous system magnesium deficiency. Archives of internal medicine, 1991. (https://www.ncbi.nlm.nih.gov/pubmed/2001142)

Lauritano, C. und A. Ianora: Marine Organisms with Anti-Diabetes Properties. Marine Drugs, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27916864)

Maehira, F. et al: Soluble silica and coral sand suppress high blood pressure and improve the related aortic gene expressions in spontaneously hypertensive rats. Nutrition Research, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21419319)

Soost, F. et al: Natürliches korallines Kalziumkarbonat als alternativer Ersatz bei knöchernen Defekten des Schädels. Mund-, Kiefer- und Gesichtschirurgie, 1998. (https://link.springer.com/article/10.1007/s100060050037)

Tachiki, K. et al: Capture of influenza viruses and prevention of their infection by coral mineral powder (sango mineral powder). Biocontrol Science, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22451428)

Vuola, J. et al: Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials, 1996. (https://www.ncbi.nlm.nih.gov/pubmed/8879513)

Willcox, D. C. et al: Genetic determinants of exceptional human longevity: insights from the Okinawa Centenarian Study. Journal of the American Aging Association, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/22253498)


Abdel-Wahhab, M. A., Aly, S. E.: Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis. Journal of Applied Toxicology, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/15856529)

Abdul-Ameer, N., Al-Harchan, H.: Treatment of Acne Vulgaris With Nigella Sativa Oil Lotion. The Iraqi Postgraduate Medical Journal, 2010. (https://www.semanticscholar.org/paper/Treatment-of-Acne-Vulgaris-With-Nigella-Sativa-Oil-Abdul-Ameer-Al-Harchan/3fb00c114fe99d290e485b32d413ef9a306e3478)

Ali, S. A. et al: Effect of Nigella Sativa (Kalonji) on Serum Lipid Profile. Annals Vol 18, 2012. (https://pdfs.semanticscholar.org/8835/1f90e95e0d6d6c7fef4e11900300bebda096.pdf)

Al-Sheddi, E. S. et al: Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pacific Journal of Cancer Prevention, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24568529)

Amin, B., Hosseinzadeh, H.: Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects. Planta Medica, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26366755)

Bamosa, A. O. et al: Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian Journal of Physiology and Pharmacology, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/21675032)

Benhaddou-Andaloussi, A. et al: The In Vivo Antidiabetic Activity of Nigella sativa Is Mediated through Activation of the AMPK Pathway and Increased Muscle Glut4 Content. Evidence-Based Complementary and Alternative Medicine, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21584245)

Boskabady, M. H. et al: The possible prophylactic effect of Nigella sativa seed extract in asthmatic patients. Fundamental & Clinical Pharmacology, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17868210)

Dahri, A. H. et al: Effect of Nigella sativa (kalonji) on serum cholesterol of albino rats. Journal of Ayub Medical College Abbottabad, 2005. (https://www.ncbi.nlm.nih.gov/pubmed/16092657)

Dehkordi, F. R., Kamkhah, A. F.: Antihypertensive effect of Nigella sativa seed extract in patients with mild hypertension. Fundamental & Clinical Pharmacology, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18705755)

Effenberger-Neidnicht, K., Schobert, R.: Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemotherapy and Pharmacology, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/20582416)

Hossein, B. M., Nasim, V., Sediga, A.: The protective effect of Nigella sativa on lung injury of sulfur mustard-exposed Guinea pigs. Experimental Lung Research, 2008. (https://www.ncbi.nlm.nih.gov/pubmed/18432455)

Houghton, P. J. et al: Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Medica, 1995. (https://www.ncbi.nlm.nih.gov/pubmed/7700988)

Kooti, W. et al: Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chinese Journal of Natural Medicines, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/28236403)

Salem, E. M. et al: Comparative study of Nigella Sativa and triple therapy in eradication of Helicobacter Pylori in patients with non-ulcer dyspepsia. Saudi Journal of Gastroenterology, 2010. (https://www.ncbi.nlm.nih.gov/pubmed/20616418)

Salim, E. I.. Fukushima, S.: Chemopreventive potential of volatile oil from black cumin (Nigella sativa L.) seeds against rat colon carcinogenesis. Nutrition and Cancer, 2003. (https://www.ncbi.nlm.nih.gov/pubmed/12881014)

Yimer, E. M. et al: Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. Evidence-Based Complementary and Alternative Medicine, 2019. (https://www.ncbi.nlm.nih.gov/pubmed/31214267)

Vitamin B12:

Björkegren, K., Svärdsudd, K.: Reported symptoms and clinical findings in relation to serum cobalamin, folate, methylmalonic acid and total homocysteine among elderly Swedes: a population-based study. Journal of Internal Medicine, 2003. (https://www.ncbi.nlm.nih.gov/pubmed/12974873)

Bor, M. V. et al: A daily intake of approximately 6 microg vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. The American Journal of Clinical Nutrition, 2006. (https://www.ncbi.nlm.nih.gov/pubmed/16400049)

Briani, C. et al: Cobalamin Deficiency: Clinical Picture and Radiological Findings. Nutrients, 2013. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847746/)

DGE – Deutsche Gesellschaft für Ernährung e.V.: Referenzwerwerte Vitamin B12 (Cobalamine), 2019. (https://www.dge.de/wissenschaft/referenzwerte/vitamin-b12/)

Khodabandehloo, N. et al: Determining Functional Vitamin B12 Deficiency in the Elderly. Iranian Red Crescent Medical Journal, 2015. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585337/)

Kim, G. S. et al: Effects of vitamin B12 on cell proliferation and cellular alkaline phosphatase activity in human bone marrow stromal osteoprogenitor cells and UMR106 osteoblastic cells. Metabolism, 1996. (https://www.ncbi.nlm.nih.gov/pubmed/8969275)

Kuzminski, A. M. et al: Effective treatment of cobalamin deficiency with oral cobalamin. Blood, 1998. (https://www.ncbi.nlm.nih.gov/pubmed/9694707)

Miles, L. M. et al: Impact of baseline vitamin B12 status on the effect of vitamin B12 supplementation on neurologic function in older people: secondary analysis of data from the OPEN randomised controlled trial. European Journal of Clinical Nutrition, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28225050)

N/A: Vitamin B12 and cognitive function: an evidence-based analysis. Ontario Health Technology Assessment Series, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/24379897)

Romain, M. et al: The role of Vitamin B12 in the critically ill – a review. Anaesthesia and Intensive Care Journal, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27456173)

Shipton, M. J., Thachil, J.: Vitamin B12 deficiency - A 21st century perspective. Clinical Medicine Journal, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/25824066)

Tamura, J. et al: Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clinical & Experimental Immunology, 1999. (https://www.ncbi.nlm.nih.gov/pubmed/10209501)

Toresson, L. et al: Oral Cobalamin Supplementation in Dogs with Chronic Enteropathies and Hypocobalaminemia. Journal of Veterinary Internal Medicine, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/26648590)

Watanabe, F. et al: Vitamin B₁₂-containing plant food sources for vegetarians. Nutrients, 2014. (https://www.ncbi.nlm.nih.gov/pubmed/24803097)

Watanabe, F., Bito, T.: Determination of Cobalamin and Related Compounds in Foods. Journal of AOAC International, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29669618)


Agren, M. S., Franzén, L.: Influence of zinc deficiency on breaking strength of 3-week-old skin incisions in the rat. Acta chirurgica Scandinavica, 1990. (https://www.ncbi.nlm.nih.gov/pubmed/2264423)

Arsenault, J. E. und Brown, K. H.: Zinc intake of US preschool children exceeds new dietary reference intakes. The American Journal of Clinical Nutrition, 2003. (https://academic.oup.com/ajcn/article/78/5/1011/4677484)

Chabosseau, P., Rutter, G.A.: Zinc and diabetes. Archives of Biochemistry and Biophysics, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27262257)

Gammoh, N. Z. und Rink, L.: Zinc in Infection and Inflammation. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28629136)

Gowda, D., Premalatha, V., Imtiyaz, D.B.: Prevalence of Nutritional Deficiencies in Hair Loss among Indian Participants: Results of a Cross-sectional Study. International Journal of Trichology, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/28932059)

Hawkins, T. et al: Whole body monitoring and other studies of zinc-65 metabolism in patients with dermatological diseases. Clinical and Experimental Dermatology, 1976. (https://www.ncbi.nlm.nih.gov/pubmed/824079)

Hojyo, S. und Fukada, T.: Roles of Zinc Signaling in the Immune System. Journal of Immunology Research, 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27872866)

Hunt, C. D. et al: Effects of dietary zinc depletion on seminal volume and zinc loss, serum testosterone concentrations, and sperm morphology in young men. The American Journal of Clinical Nutrition, 1992. (https://www.ncbi.nlm.nih.gov/pubmed/1609752)

Jaryum, K. H., Okoye, Z. S. C., Stoecker, B.: Hair Zinc: an Index for Zinc Status in Under-Five Children from Low-Income Communities in Kanam Area of North-Central Nigeria. Biological Trace Element Research, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/28849356)

King, J. C.: Zinc: an essential but elusive nutrient. The American Journal of Clinical Nutrition, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/21715515)

Lansdown, A. B. et al: Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair and Regeneration, 2007. (https://www.ncbi.nlm.nih.gov/pubmed/17244314)

Maserejian, N. N., Hall, S. A., McKinlay, J. B.: Low dietary or supplemental zinc is associated with depression symptoms among women, but not men, in a population-based epidemiological survey. Journal of Affective Disorders, 2011. (https://www.ncbi.nlm.nih.gov/pubmed/22030131)

Mittmann, U.: Bioverfügbarkeit von Zinkpräparaten. Deutsche Apotheker Zeitung, 2001. (https://www.deutsche-apotheker-zeitung.de/daz-az/2001/daz-50-2001/uid-5197)

Mocchegiani, E. et al: Zinc: dietary intake and impact of supplementation on immune function in elderly. Age Journal, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/22222917)

Ogawa, Y. et al: Zinc and Skin Disorders. Nutrients, 2018. (https://www.ncbi.nlm.nih.gov/pubmed/29439479)

Science, M. et al: Zinc for the treatment of the common cold: a systematic review and meta-analysis of randomized controlled trials. Canadian Medical Association Journal, 2012. (https://www.ncbi.nlm.nih.gov/pubmed/22566526)

Swardfager, W. et al: Zinc in depression: a meta-analysis. Biological Psychiatry, 2013. (https://www.ncbi.nlm.nih.gov/pubmed/23806573)

Wessels, I., Maywald, M., Rink, L.: Zinc as a Gatekeeper of Immune Function. Nutrients, 2017. (https://www.ncbi.nlm.nih.gov/pubmed/29186856)

Wong, C. P., Rinaldi, N. A., Ho, E.: Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Molecular Nutrition and Food Research, 2015. (https://www.ncbi.nlm.nih.gov/pubmed/25656040)